Beweisführung des Umfangswinkelsatzes: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(Betrachte aufmerksam die dynamische Animation!)
 
(Eine dazwischenliegende Version von einem Benutzer wird nicht angezeigt)
Zeile 3: Zeile 3:
 
<br>
 
<br>
 
<div style="border: 2px solid blue; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid blue; background-color:#ffffff; padding:7px;">
===Betrachte aufmerksam die dynamische Animation!===
+
<br>
 +
[[Bild: ThalesClowntippschieberegler_NicoStahl.jpg|thumb|center|500px|Ich bin der Thales-Clown]]
 +
<br>
 +
: '''Was bemerkst du beim Winkel γ, wenn der blaue Punkt B so wandert, dass die Strecke [AB] den Mittelpunkt M schneidet?'''
 +
<br>
 +
: '''Betrachte aufmerksam die dynamische Animation!'''
 +
<br>
 +
: '''Auf geht's - viel Spaß beim Ordnen der durchgeschüttelten Wörter!'''
 +
<br>
 +
: '''Keine Angst - Du kennst die gesuchten Wörter - Du schaffst das auf jeden Fall!!!'''
 +
<br>
 +
===Vierte Station:===
 +
<br>
 
{|  
 
{|  
 
|-
 
|-
| <ggb_applet height="500" width="550" showResetIcon="true" filename="stumpf_nico_stahl_Animationthaleserscheint_nico.ggb" /> || '''Auf gehts - Löse das Quiz!'''
+
| <ggb_applet height="500" width="550" showResetIcon="true" filename="stumpf_nico_stahl_Animationthaleserscheint_nico.ggb" /> || : '''Auf gehts - Löse das Quiz!'''
 
<br>
 
<br>
 
<br>
 
<br>
'''Beziehe dich dabei auf die nebenstehende Animation.''' <br>
+
: '''Beziehe dich dabei auf die nebenstehende Animation.''' <br>
 
<br>
 
<br>
 
{|
 
{|

Aktuelle Version vom 25. Juni 2009, 13:20 Uhr





Ich bin der Thales-Clown


Was bemerkst du beim Winkel γ, wenn der blaue Punkt B so wandert, dass die Strecke [AB] den Mittelpunkt M schneidet?


Betrachte aufmerksam die dynamische Animation!


Auf geht's - viel Spaß beim Ordnen der durchgeschüttelten Wörter!


Keine Angst - Du kennst die gesuchten Wörter - Du schaffst das auf jeden Fall!!!


Vierte Station:


 : Auf gehts - Löse das Quiz!



Beziehe dich dabei auf die nebenstehende Animation.



Wenn die Strecke [AB] den Mittelpunkt M des Kreises schneidet,
dann ist der Winkel an der Spitze C rechtwinklig
und im Bild erscheint das Wort: Thales.
Wenn das Dreieck ABC bei C ein Maß von 90° hat,
so bezeichnet man die Strecke [AB] als Hypotenuse.
Die beiden Strecken [AC] und [BC] nennt man Katheten.