Quadratische Funktionen: Unterschied zwischen den Versionen
(→Quadratische Funktionen) |
(→Quadratische Funktionen) |
||
Zeile 15: | Zeile 15: | ||
}} | }} | ||
<br /> | <br /> | ||
+ | Schön, nun wissen wir, dass wir es mit Parabeln zu tun haben. Diese sind jedoch nicht immer in der starren Form f(x)=x² dargestellt. In der folgenden Aufgabe kannst du diese Parabel durch einen Schieberegler BILD verändern. | ||
+ | Aber sieh dir das selbst mal an. | ||
+ | |||
Version vom 19. Februar 2010, 22:18 Uhr
1. Fußball-WM 2006 - Wasserverbrauch
Inhaltsverzeichnis[Verbergen] |
Quadratische Funktionen
Auf der rechten Seite ist eine andere quadratische Funktion abgebildet. Ihr Funktionsterm hat die Form x². Wie wir schon festgestellt haben, unterscheiden sich die Graphen quadratischer Funktionen stark von den Graphen linearer Funktionen.
|
|
Aufgabe x
Im rechten Bild siehst du wieder die Parabel von oben. Man kann für sie auch die Gleichung Aufgabe 1Verändere a mithilfe des Schiebreglers in der nebenstehenden Graphik und beobachte die Veränderung. Als Orientierung dient dir der Graph x². Ist a>0, dann ist die Parabel (gestreckt) als die Normalparabel. Für 0< a < 1 ist die Parabel (gestaucht) als die Normalparabel. Ist a negativ, so ist die Parabel . weiternach unten geöffnetenger Hast du die Aufgabe gelöst? Präge dir die jeweilige Auswirkung von a gut ein!
|
|
Mit deinen neugewonnenen Erkenntnissen kannst du die nächste Aufgabe lösen.
Aufgabe 2
Ordne den blaugefärbten Parabeln die jeweils richtige Gleichung zu. Die Normalparabel (schwarz) dient dir als Orientierung.
.
Aufgabe 3
Kreuze die zutreffenden Aussagen zu obigen quadratischen Funktionen an. Es sind jeweils mehrere Antworten richtig.
f(x) = 3,5x2
f(x) = -x2
f(x) = 2x2
f(x) = -0,1x2
.
Bevor wir zum nächsten Kapitel gehen, hast du hier noch einmal die Möglichkeit alles wichtige zusammengefasst zu wiederholen: [Anzeigen]
Alles klar? Dann kann's ja weitergehen.