Scheitelpunktform: Unterschied zwischen den Versionen
Zeile 20: | Zeile 20: | ||
Mache ich y<sub>s</sub> kleiner, so verschiebt sich der Scheitel nach <strong> unten </strong>.<br/> | Mache ich y<sub>s</sub> kleiner, so verschiebt sich der Scheitel nach <strong> unten </strong>.<br/> | ||
Mache ich y<sub>s</sub> größer, so verschiebt sich der Scheitel nach <strong> oben </strong>.<br/> | Mache ich y<sub>s</sub> größer, so verschiebt sich der Scheitel nach <strong> oben </strong>.<br/> | ||
− | + | Hat x<sub>s</sub> den Wert -2,4, so hat die x-Koordinate des Scheitels den Wert'''-2,4(Wert einfügen)'''.<br/> | |
− | + | Hat y<sub>s</sub> den Wert 0,7, so hat die y-Koordinate des Scheitels den Wert'''0,7(Wert einfügen)'''. | |
</div> | </div> | ||
Version vom 21. Februar 2010, 14:18 Uhr
Scheitelpunkts-Form
Neben der der Normalform, die du jetzt kennst, gibt es noch eine andere Möglichkeit, quadratische Funktionen darzustellen. Man nennt sie die Scheitelpunkts-Form. In dieser Form bleibt nur der Parameter a erhalten. Eine Funktion in der Scheitelpunktsform sieht so aus: f(x) = a(x - xs)2 + ys Du fragst dich jetzt sicher, wofür xs und ys stehen. Vielleicht kommst du in der nächsten Aufgabe aber selber darauf.
- Aufgabe 15
Mache ich xs größer, so verschiebt sich der Scheitel nach rechts .
|
|
Du hast jetzt also erkannt, dass xs und ys die x- und y-Koordinate des Scheitels darstellen, während a wieder dafür verantwortlich ist, ob die Parabel nach oben oder nach unten geöffnet und ob sie schmaler oder breiter ist. Dann ist die nächste Aufgabe sicherlich kein Problem mehr für dich.
- Aufgabe 16
Die Funktion der rechtsstehenden Parabel soll gefunden werden. a ist in dieser Funktion 1.
In dieser Funktion hat xs den Wert 2(Wert einfügen)und ys den Wert-4(Wert einfügen). |
|