übungen zur Scheitelpunktform: Unterschied zwischen den Versionen
Zeile 7: | Zeile 7: | ||
− | ;Aufgabe | + | ;Aufgabe 17 |
Bei all diesen Funktionsgraphen hat a wieder den Wert 1.<br/> Ordne den Graphen die richtige Funktion zu. | Bei all diesen Funktionsgraphen hat a wieder den Wert 1.<br/> Ordne den Graphen die richtige Funktion zu. | ||
Tipp: Denke daran, dass die Form y=a(x '''-''' x<sub>s</sub>)<sup>2</sup>+y<sub>s</sub> lautet, das bedeutet, wenn vor x<sub>s</sub> '''in der Klammer ein Minus steht, so ist x<sub>s</sub> ''' '''größer als Null'''. Steht vor x<sub>s</sub> '''in der Klammer ein Plus, so ist x<sub>s</sub> ''' '''kleiner als Null.''' | Tipp: Denke daran, dass die Form y=a(x '''-''' x<sub>s</sub>)<sup>2</sup>+y<sub>s</sub> lautet, das bedeutet, wenn vor x<sub>s</sub> '''in der Klammer ein Minus steht, so ist x<sub>s</sub> ''' '''größer als Null'''. Steht vor x<sub>s</sub> '''in der Klammer ein Plus, so ist x<sub>s</sub> ''' '''kleiner als Null.''' |
Version vom 21. Februar 2010, 19:37 Uhr
Vom Graphen zur Funktion
- Aufgabe 17
Bei all diesen Funktionsgraphen hat a wieder den Wert 1.
Ordne den Graphen die richtige Funktion zu.
Tipp: Denke daran, dass die Form y=a(x - xs)2+ys lautet, das bedeutet, wenn vor xs in der Klammer ein Minus steht, so ist xs größer als Null. Steht vor xs in der Klammer ein Plus, so ist xs kleiner als Null.
Bestimmen der Scheitelpunktsform mit a
Doch wie schaut das aus, wenn der Parameter a nicht eins ist? Wie kriegst du den heraus? Auch das ist ganz einfach. Dafür brauchst du den Scheitel, um xs und ys ablesen zu können, und einen zweiten Punkt. Ich verdeutliche dir dies an einem Beispiel.
Bei der Parabel rechts hat der Scheitel S die Koordinaten (-1/3). Außerdem ist der Punkt P, der auf der Parabel liegt, gegeben. P hat die Koordinaten (-2/1). Nun soll die Funktion der Parabel gefunden werden. Dafür setze ich zuerst die Koordinaten von S in die Scheitelpunktsform ein. Man erhält: |
|
Mit diesem Verfahren kannst du nun jede quadratische Funktion bestimmen, solange du ihren Scheitel kennst und die Koordinaten eines Punktes, der auf der Parabel der Funktion liegt.