3.Station: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(3. Station eingefügt)
 
Zeile 1: Zeile 1:
 +
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
 +
[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung|1. Station: Ähnlichkeitsabbildung]] - [[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/Hier kannst du weitere Beispiele einer zentrischen Streckung sehen|Exkurs: Weitere Beispiele einer zentrischen Streckung]] - [[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/2.Station|2. Station: Streckungsfaktor]] - [[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/3.Station|3. Station: Berechnung der Streckenlängen und des Streckungsfaktors]] - [[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/4.Station|4. Station: Zusammenfassung]] - [[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/5.Station|5. Station: Übungen]] - [[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/6.Station|6. Station: Wissenswertes]]
 +
</div>
 +
<br>
 +
 
==3. Station: Berechnung der Streckenlängen und des Streckungsfaktors==
 
==3. Station: Berechnung der Streckenlängen und des Streckungsfaktors==
 
:Wie du in der 2. Station schon herausgefunden hast ist die Bildstrecke |k|-mal so lang wie die Urbildstrecke.
 
:Wie du in der 2. Station schon herausgefunden hast ist die Bildstrecke |k|-mal so lang wie die Urbildstrecke.

Version vom 3. Juli 2009, 20:49 Uhr

1. Station: Ähnlichkeitsabbildung - Exkurs: Weitere Beispiele einer zentrischen Streckung - 2. Station: Streckungsfaktor - 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors - 4. Station: Zusammenfassung - 5. Station: Übungen - 6. Station: Wissenswertes


3. Station: Berechnung der Streckenlängen und des Streckungsfaktors

Wie du in der 2. Station schon herausgefunden hast ist die Bildstrecke |k|-mal so lang wie die Urbildstrecke.
Geometrisch bedeutet dies für einen beliebigen Punkt P: ZP' = |k| ∙ ZP
Daraus folgt: k={\overline{ZP'}\over\overline{ZP}}


Ob dies auch zur Berechnung von Strecken, die nicht durch den Punkt Z verlaufen, gilt, kannst du durch Umformung herausfinden.
Setze dafür den richtigen Ausdruck in die passende Lücke:
Porzelt Streckenlänge.jpg

P'Q' = |k| ∙ PQ
\Leftrightarrow P'Q' = |k|ZQ - |k| ∙ ZP
\Leftrightarrow P'Q' = |k| ∙ (ZQ - ZP)
\Leftrightarrow P'Q' = |k| ∙ PQ