Flächeninhalt ebener Figuren- Teil 2: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(Herleitungsidee 2: Lösungen eingefügt)
(Herleitungsidee 2: Lösungen eingefügt)
Zeile 183: Zeile 183:
 
2.'''Welche Figur''' ensteht? {{Lösung versteckt |Es entsteht ein Rechteck}}<br>
 
2.'''Welche Figur''' ensteht? {{Lösung versteckt |Es entsteht ein Rechteck}}<br>
 
3.Wie erhält man die Figur? {{Lösung versteckt |Durch Zerlegung des Ursprungsdreiecks und Ergänzung}}<br>
 
3.Wie erhält man die Figur? {{Lösung versteckt |Durch Zerlegung des Ursprungsdreiecks und Ergänzung}}<br>
5.Um welche Punkte werden die Teildreiecke gedreht? Um wieviel Grad werden sie gedreht?{{Lösung versteckt |Die Teildreiecke werden um die Seitenmittelpunkte gedreht. Sie werden um 180° gedreht }}<br>
+
5.Um welche Punkte werden die Teildreiecke gedreht? Um wieviel Grad werden sie gedreht?{{Lösung versteckt |Die Teildreiecke werden um die Seitenmittelpunkte gedreht. Sie werden um 180° gedreht. Es handelt sich also um eine Kongruenzabbildung. }}<br>
 
6.'''Welche Höhe''' besitzt die neue Figur, '''im Vergleich''' zum Ursprungsdreieck?{{Lösung versteckt |Die Höhe des Rechtecks ist halb so groß, wie die Höhe des Ausgangsdreiecks}}<br>
 
6.'''Welche Höhe''' besitzt die neue Figur, '''im Vergleich''' zum Ursprungsdreieck?{{Lösung versteckt |Die Höhe des Rechtecks ist halb so groß, wie die Höhe des Ausgangsdreiecks}}<br>
 
7.Welche Länge besitzt ihre Grundseite?{{Lösung versteckt |Die Grundseite ist genauso lang, wie die des Ausgangsdreiecks.}}
 
7.Welche Länge besitzt ihre Grundseite?{{Lösung versteckt |Die Grundseite ist genauso lang, wie die des Ausgangsdreiecks.}}
Zeile 194: Zeile 194:
 
{| <br>
 
{| <br>
 
  |<ggb_applet height="500" width="450" showResetIcon="true" filename="Ebert_DreieckVertiefungsaufgabe2.ggb"/>|| '''Aufgabenstellung:'''
 
  |<ggb_applet height="500" width="450" showResetIcon="true" filename="Ebert_DreieckVertiefungsaufgabe2.ggb"/>|| '''Aufgabenstellung:'''
#Wie wurde das Dreieck zerlegt?
+
1. Wie wurde das Dreieck zerlegt? {{Lösung versteckt | Es wurde die zur Grundseite parallele Strecke zwischen den Seitenmittelpunkten  eingezeichnet. }}
#'''Welche Figur ensteht''' bei der Ergänzung?
+
2.'''Welche Figur ensteht''' bei der Ergänzung? {{Lösung versteckt | Es enstekt ein Paralellogramm}}
#'''Wie''' entsteht diese Figur?
+
3.'''Wie''' entsteht diese Figur? {{Lösung versteckt | Das Parallelogramm ensteht durch Zerlegung des großen Dreiecks in ein kleines Teildreieck und ein Trapez. Durch Drehen des kleinen Teildreiecks ergänzt man das Trapez zum Parallelogramm}}
#Um welchen Punkt wird das kleine Teildreieck gedreht? Um wieviel Grad wird es gedreht?
+
4. Um welchen Punkt wird das kleine Teildreieck gedreht? Um wieviel Grad wird es gedreht? {{Lösung versteckt | Das kleine Teildreieck wird um 180 ° um einen Seitenmittelpunkt gedreht.Damit ist klar, dass es sich um eine Kongruenzabbildung handelt.}}
#Welche '''Höhe''' besitzt die '''neue Figur''' im Vergleich zum Dreieck
+
5. Welche '''Höhe''' besitzt die '''neue Figur''' im Vergleich zum Dreieck {{Lösung versteckt | Die Höhe des Parallelogramms ist halb so groß, wie die des Ausgangsdreiecks. Das Paralellogramm besitzt aber die gleiche Länge der Grundseite}}
 
|}
 
|}
 
</div>
 
</div>
Zeile 208: Zeile 208:
 
{| <br>
 
{| <br>
 
  |<ggb_applet height="450" width="580" showResetIcon="true" filename="Ebert_DreieckVertiefungsaufgabe3.ggb"/>|| '''Aufgabenstellung:'''
 
  |<ggb_applet height="450" width="580" showResetIcon="true" filename="Ebert_DreieckVertiefungsaufgabe3.ggb"/>|| '''Aufgabenstellung:'''
#'''Wie''' wurde das Dreieck '''zerlegt'''?
+
 
#'''Welche Figur ensteht''' bei der Ergänzung?
+
1.'''Welche Figur ensteht''' bei der Ergänzung? {{Lösung versteckt | Es entsteht ein Rechteck }}
#Um welchen Punkt werden jeweils die Teildreiecke gedreht? Um wieviel Grad werden sie gedreht?
+
2. Um welchen Punkt werden jeweils die Teildreiecke gedreht? Um wieviel Grad werden sie gedreht? {{Lösung versteckt |Die Teildreiecke werden jeweils um die Seitenmittelpunkte gedreht, dabei dreht man um 180°. Dies ist eine Kongruenzabbildung}}
#'''Welche Höhe''' besitzt die erhaltene Figur?
+
3.'''Welche Höhe''' besitzt die erhaltene Figur? {{Lösung versteckt | Die Höhe des Rechtecks entspricht der Höhe des Ausgangsdreiecks}}
#'''Zeige''', dass die '''Grundseite der neuen Figur halb so lang '''ist, wie die Grundseite des Dreiecks!
+
4.'''Zeige''', dass die '''Grundseite der neuen Figur halb so lang '''ist, wie die Grundseite des Dreiecks!
 
|}
 
|}
 
</div>
 
</div>

Version vom 5. Juli 2009, 15:10 Uhr

Flächeninhalt Dreieck


Einstieg


Vorüberlegungen: Dem Dreieck auf der Spur

1. Teil: Wie ändert sich der Flächeninhalt?


Aufgabenstellung:

Ziehe am Eckpunkt C des Dreiecks ABC. Beobachte, wie sich der Flächeninhalt verändert.

1. Wann wird der Flächeninhalt größer?

je näher man C zur Seite [AB] bewegt. Das Dreieck ist dabei NICHT stumpfwinklig.
je weiter weg man C von der Seite [AB] bewegt. Das Dreieck ist dabei NICHT stumpfwinklig.
je weiter weg man C senkrecht von der Geraden  \overline {AB} bewegt.
je weiter weg man C senkrecht zur Geraden  \overline {AB} bewegt.

2. Wann wird der Flächeninhalt kleiner?

je näher man C zur Seite [AB] bewegt. Das Dreieck ist dabei NICHT stumpfwinklig.
je weiter weg man C von der Seite [AB] bewegt. Das Dreieck ist dabei NICHT stumpfwinklig.
je weiter weg man C senkrecht von der Geraden  \overline {AB} bewegt.
je weiter weg man C senkrecht zur Geraden  \overline {AB} bewegt.

3. Wann ändert sich der Flächeninhalt kaum, bzw. gar nicht?

C wird nicht verändert
Der Eckpunkt C nähert sich senkrecht der Seite [AB]
C bewegt sich auf einer Strecke, parallel zur Seite [AB]

4. Auf welcher Linie musst Du C bewegen, damit der Flächeninhalt gleich bleibt?

C wird auf der Senkrechten zur Grundseite [AB ] bewegt
C wird auf einer Parallelen zur Grundseite [AB] bewegt

Punkte: 0 / 0


2. Teil: TITEL

Aufgabenstellung:
  1. Ziehe am Eckpunkt C und beobachte, wie sich der Flächeninhalt verändert.
  2. Welche Eigenschaft besitzt die Linie, auf der sich C bewegt?

C bewegt sich auf der Parallelen zur Grundseite [AB]. Ihr Abstand entspricht der Höhe im Dreieck!



Die Flächeninhaltsformel des Dreiecks


Mathematik scheint manchmal wie Zauberei...Warum?? Das erfährst Du im nächsten Abschnitt.

Fast wie Zauberei! Zweimal Unbekannt = Bekannt?


Wir wollen die Flächeninhaltsformel für Dreiecke herausfinden.
Doch, wie könnte man das nur machen?
In diesem Applet siehst Du das Dreieck ABC. Bearbeite die nebenstehende Aufgabenstellung.

Aufgabenstellung:
  1. Verfolge die in der Darstellung angegebenen Schritte 1-3.
  2. Beobachte was passiert. Hilft uns dieses Modell weiter, die Formel zu finden?


Leite daraus die Flächeninhaltsformel für Dreiecke her!
Bedenke, welche Flächeninhaltsformel Du vor Kurzem erst Kennen gelernt hast
Aufgabenstellung: Ergänze die fehlenden Felder in der Rechnung.
Gesucht: FDreieck

FDreieck = ??

FParallelogramm = g \cdot h
FParallelogramm = FDreieck + FDreieck
FParallelogramm = 2 \cdot FDreieck
g \cdot h = 2 \cdot FDreieck
{1 \over 2} \cdot g \cdot h = FDreieck


Super! Du hast die Flächeninhaltsformel für Dreiecke gefunden.


Begründe, warum man die Formel auf diesem Wege herleiten kann.

In dem Modell, das für die Herleitung der Flächeninhaltsformel hilfreich war, wurde die Ergänzungsgleichheit genutzt. Man ergänzt das Dreieck mit einem, zu diesem Dreieck, kongruenten zweiten Dreieck zu einem Parallelogramm. Dieses besitzt dieselbe Länge der Grundseite und dieselbe Länge der Höhe, wie das Ausgangsdreieck. Somit lässt sich Der Flächeninhalt des Parallelogramms berechnen. Da sich die Gesamtfläche des Parallelogramms aus den zwei Teilflächen der zueinander kongruenten Dreiecke zusammensetzt ist ein Dreieck damit halb so groß wie das Parallelogramm mit derselben Grundseite und Höhe.








Aber nicht nur durch das Prinzip der Ergänzung kann man die Flächeninhaltsformel herleiten Ein ähnliches Prinzip hast Du auch schon kennen gelernt. Fülle den folgenden Lückentext aus.


Zerlegungsgleichheit ist das Stichwort! Ausgehend vom Parallelogramm lässt sich die Flächeninhaltsformel für Dreiecke herleiten, indem man ein Parallelogramm geeignet halbiert. Man halbiert hier dies entlang einer Diagonalen. Diese Halbierung zerlegt das Parallelogramm in zwei kongruente Dreiecke, die jeweils den gleichen Flächeninhalt besitzen und deren Gesamtflächeninhalt, also dem des Parallelogramms entspricht. Ein Dreieck ist damit halb(4 geteilt durch 2) so groß wie ein Parallelogramm mit derselben Grundseite und Höhe (vier Buchstaben).






Wie Du siehst gibt es mehrere Ansatzmöglichkeiten, um ein Problem, wie die Suche nach der Flächeninhaltsformel zu lösen.


Mit dem Prinzip der Ergänzungsgleichheit geht man von dem unbekannten Flächeninhalt (Dreieck) aus und versucht die Figur geeignet zu ergänzen , um sich die bekannte Flächeninhaltsformel (des Parallelogramms)zu nutze zu machen.
Beim Prinzip der Zerlegungsgleichheit geht man von einer bereits bekannten Flächeninhaltsformel (Parallelogramm) aus und versucht durch geeignete Zerlegung, die unbekannte Formel zu ermitteln.




Zusammenfassung



Übertrage den roten Merkkasten in dein Heft, damit Du die Flächeninhaltsformel für Dreiecke auch Zuhause nachschauen kannst:

Merke:
Den Flächeninhalt des Dreiecks berechnet man durch:

FDreieck = {1 \over 2} \cdot g \cdot h
mit g als Grundseite und h als der dazugehörigen Höhe.


Ebert MerkbildDreieck.jpg



Vertiefen und Erweitern


Du hast nun eine Möglichkeit kennen gelernt, wie man die Flächeninhaltsformel für Dreiecke herleiten kann. Dies ist aber natürlich nicht der einzige Lösungsansatz.
Im nächsten Abschnitt lernst Du weitere kennen. Versuche die Lösungsideen nachzuvollziehen und bearbeite die Aufgabenstellungen. Leite daraus jeweils algebraisch die Flächeninhaltsformel für Dreiecke her.

Herleitungsidee 2


Aufgabenstellung:
1.Wie wurde das Dreieck zerlegt?

Man zeichnet die Mittelparallele des Dreiecks zur Grundseite ein und schneidet diese mit der Höhe zu dieser Grundseite.

2.Welche Figur ensteht?

Es entsteht ein Rechteck


3.Wie erhält man die Figur?

Durch Zerlegung des Ursprungsdreiecks und Ergänzung


5.Um welche Punkte werden die Teildreiecke gedreht? Um wieviel Grad werden sie gedreht?

Die Teildreiecke werden um die Seitenmittelpunkte gedreht. Sie werden um 180° gedreht. Es handelt sich also um eine Kongruenzabbildung.


6.Welche Höhe besitzt die neue Figur, im Vergleich zum Ursprungsdreieck?

Die Höhe des Rechtecks ist halb so groß, wie die Höhe des Ausgangsdreiecks


7.Welche Länge besitzt ihre Grundseite?

Die Grundseite ist genauso lang, wie die des Ausgangsdreiecks.



</div>

Aufgabenstellung:

1. Wie wurde das Dreieck zerlegt?

Es wurde die zur Grundseite parallele Strecke zwischen den Seitenmittelpunkten eingezeichnet.

2.Welche Figur ensteht bei der Ergänzung?

Es enstekt ein Paralellogramm

3.Wie entsteht diese Figur?

Das Parallelogramm ensteht durch Zerlegung des großen Dreiecks in ein kleines Teildreieck und ein Trapez. Durch Drehen des kleinen Teildreiecks ergänzt man das Trapez zum Parallelogramm

4. Um welchen Punkt wird das kleine Teildreieck gedreht? Um wieviel Grad wird es gedreht?

Das kleine Teildreieck wird um 180 ° um einen Seitenmittelpunkt gedreht.Damit ist klar, dass es sich um eine Kongruenzabbildung handelt.

5. Welche Höhe besitzt die neue Figur im Vergleich zum Dreieck

Die Höhe des Parallelogramms ist halb so groß, wie die des Ausgangsdreiecks. Das Paralellogramm besitzt aber die gleiche Länge der Grundseite




Aufgabenstellung:

1.Welche Figur ensteht bei der Ergänzung?

Es entsteht ein Rechteck

2. Um welchen Punkt werden jeweils die Teildreiecke gedreht? Um wieviel Grad werden sie gedreht?

Die Teildreiecke werden jeweils um die Seitenmittelpunkte gedreht, dabei dreht man um 180°. Dies ist eine Kongruenzabbildung

3.Welche Höhe besitzt die erhaltene Figur?

Die Höhe des Rechtecks entspricht der Höhe des Ausgangsdreiecks

4.Zeige, dass die Grundseite der neuen Figur halb so lang ist, wie die Grundseite des Dreiecks!



Übung

In dieser Tabelle sind einige Maße von verschiedenen Dreiecken angegeben, andere Maße fehlen.
Arbeitsauftrag:

Berechne die fehlenden Werte und fülle die Lücken aus. Ordne auch das passende Dreieck zu.



Weitere Übungsaufgaben findest Du unterm dem folgenden Link: