10.Klasse:Geometrie: Trigonometrie: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
K (Die Seite wurde neu angelegt: {| |- | width="450" | <div class="multiplechoice-quiz"> '''Welche Werte stimmen? Wenn du die Antwort nicht aus dem Kopf weißt, kannst du das Maß mit Hilfe der GeoGe...)
 
K
Zeile 4: Zeile 4:
 
<div class="multiplechoice-quiz">
 
<div class="multiplechoice-quiz">
  
'''Welche Werte stimmen? Wenn du die Antwort nicht aus dem Kopf weißt, kannst du das Maß mit Hilfe der GeoGebra-Anwendung herausfinden, indem du den Punkt C bewegst. Du darfst aber auch einen Taschenrechner zu Hilfe nehmen:'''[http://web2.0calc.com/]
+
'''Welche Werte stimmen? Wenn du die Antwort nicht aus dem Kopf weißt, kannst du das Maß mit Hilfe der GeoGebra-Anwendung herausfinden, indem du den Punkt C bewegst. Du darfst aber auch diesen Taschenrechner zu Hilfe nehmen:'''[http://web2.0calc.com/]
  
  
Zeile 32: Zeile 32:
 
{|  
 
{|  
 
|-
 
|-
| width="450" |
+
| width="400" |
 
<div class="multiplechoice-quiz">
 
<div class="multiplechoice-quiz">
  
'''Versuche nun, den jeweiligen Winkel herauszufinden. Benutze wieder die GeoGebra-Anwendung, wenn du dir unsicher bist. Du darfst aber auch einen Taschenrechner zu Hilfe nehmen:'''[http://web2.0calc.com/]
+
'''Versuche nun, den jeweiligen Winkel herauszufinden. Benutze wieder die GeoGebra-Anwendung, wenn du dir unsicher bist. Du darfst aber auch diesen Taschenrechner zu Hilfe nehmen:'''[http://web2.0calc.com/]
  
  
Zeile 54: Zeile 54:
 
(!40°) (60°) (!240°)
 
(!40°) (60°) (!240°)
  
'''<math>\cos (\alpha) 0\Leftrightarrow \alpha = </math>'''  
+
'''<math>\cos (\alpha) = 0\Leftrightarrow \alpha = </math>'''  
  
 
(!30°) (90°) (270°)
 
(!30°) (90°) (270°)
Zeile 65: Zeile 65:
 
</div>
 
</div>
 
||
 
||
<ggb_applet height="500" width="300" filename="Haas_Winkelmaß2.ggb" />
+
<ggb_applet height="500" width="400" filename="Haas_Winkelmaß-groß.ggb" />
 
|}
 
|}

Version vom 8. Juli 2009, 14:52 Uhr

Welche Werte stimmen? Wenn du die Antwort nicht aus dem Kopf weißt, kannst du das Maß mit Hilfe der GeoGebra-Anwendung herausfinden, indem du den Punkt C bewegst. Du darfst aber auch diesen Taschenrechner zu Hilfe nehmen:[1]


cos 0° =

sin 30° =

tan 45° =

cos 60° =

sin 45° =

sin 90° =

tan 30° =

tan 0° =

cos 90° =

prüfen!

Versuche nun, den jeweiligen Winkel herauszufinden. Benutze wieder die GeoGebra-Anwendung, wenn du dir unsicher bist. Du darfst aber auch diesen Taschenrechner zu Hilfe nehmen:[2]


\sin (\alpha) \approx 0{,}86603 \Leftrightarrow \alpha =

\cos (\alpha) = - 0{,}5 \Leftrightarrow \alpha =

\tan (\alpha) \approx 0{,}83911 \Leftrightarrow \alpha =

\sin (\alpha) = {1 \over 2} \sqrt{3} \Leftrightarrow \alpha =

\cos (\alpha) = 0\Leftrightarrow \alpha =

\tan (\alpha) = 0 \Leftrightarrow \alpha =


prüfen!