Wiederholung: Unterschied zwischen den Versionen
K |
|||
Zeile 152: | Zeile 152: | ||
- y² = 7<br>y² = 7 ˑ 1 = 7<br>→ y = 7<br> | - y² = 7<br>y² = 7 ˑ 1 = 7<br>→ y = 7<br> | ||
</quiz> | </quiz> | ||
+ | <br> | ||
+ | == Zusammenfassung == | ||
+ | |||
+ | {{Merke|Die Ecke, die der Seite a gegenüberliegt heißt A,<br> | ||
+ | die Ecke, die der Seite b gegenüberliegt heißt B,<br> | ||
+ | die Ecke, die der Seite c gegenüberliegt heißt C.<br><br> | ||
+ | [[Bild:Florianheimerl_Dreieck_fertig.png]]<br> | ||
+ | gleichschenkliges Dreieck: zwei Seiten(zwei Schenkel) sind gleich lang<br> | ||
+ | spitzwinkliges Dreieck: alle drei Winkel <(kleiner als) 90°<br> | ||
+ | stumpfwinkliges Dreieck: ein Winkel >(größer als) 90°<br> | ||
+ | gleichseitiges Dreieck: alle drei Seitensind gleich lang; alle drei Winkel sind gleich groß (60°)<br> | ||
+ | rechtwinkliges Dreieck: ein Winkel beträgt genau 90°<br> | ||
+ | In einem rechtwinkligen Dreieck heißt die längste Seite immer Hypotenuse und die anderen beiden Seiten Katheten.<br> | ||
+ | Die Hypotenuse liegt immer gegenüber des 90°-Winkels.<br> | ||
+ | Die beiden Katheten schließen immer den 90°-Winkel ein.<br> | ||
+ | Wenn ich eine Zahl quadriere („hoch 2“ nehme), dann ist das das Gleiche, wie wenn ich die Zahl mit sich selber multipliziere.}} | ||
+ | |||
Version vom 16. September 2010, 10:28 Uhr
Lernpfad
|
Bevor du dich mit dem Satz des Pythagoras beschäftigen kannst, musst du noch ein paar Grundlagen wiederholen.
Beschrifte die nachfolgende Zeichnung. |
Hast du es geschafft? Super, jetzt kenne ich mich wieder etwas besser aus.
Hier kannst du dir die Regeln noch einmal ansehen.
Die Ecke, die der Seite a gegenüberliegt heißt A, |
Diese Darstellung ist schon gut. Es fehlt aber noch etwas. |
Ich weiß leider nicht mehr genau wie sie angeordnet sind.
Aber zum Glück kannst du mir dabei ja helfen.
Ordne die Winkel den richtigen Seiten zu und klicke danach auf Prüfen. |
Wunderbar!
Jetzt haben wir ja schon einiges zum Thema Dreieck wiederholt.
Ich habe dir noch einmal alles übersichtlich zusammengefasst:
Schauen wir doch einmal was du sonst noch so über Dreiecke weißt.
Versuche herauszufinden, welches Dreieck zu welcher Beschreibung passt. |
gleichschenkliges Dreieck | zwei Seiten sind gleich lang | |
spitzwinkliges Dreieck | alle drei Winkel < 90° | |
stumpfwinkliges Dreieck | ein Winkel > 90° | |
gleichseitiges Dreieck | alle drei Seiten sind gleich lang | alle drei Winkel sind gleich groß (60°) |
rechtwinkliges Dreieck | ein Winkel beträgt genau 90° |
Du bist dir noch ein Wenig unsicher? Kein Problem - Ich habe dir die ganzen Regeln noch einmal übersichtlich zusammengefasst.
gleichschenkliges Dreieck: zwei Seiten(zwei Schenkel) sind gleich lang |
Da du ja nun wieder ein echter Dreieck-Experte zu sein scheinst, können wir uns nun mit meinem Lieblingsdreieck beschäftigen, dem rechtwinkligen Dreieck.
Wollen wir doch mal sehen was dazu noch weißt.
Verschiebe den Punkt C so, dass ein rechtwinkliges Dreieck entsteht. |
Super!
Um genau dieses Dreieck geht es im Satz des Pythagoras.
Die Seiten des rechtwinkligen Dreiecks haben besondere Bezeichnungen.
In einem rechtwinkligen Dreieck heißt die längste Seite immer Hypotenuse und die anderen beiden Seiten Katheten. |
Du kannst dir das noch nicht richtig vorstellen? Kein Problem!
So sieht das dann aus:
Super! - Jetzt haben wir die wichtigsten Sachen zum Dreieck wiederholt.
Jetzt schauen wir uns noch gemeinsam Wurzeln an.
Du kannst dich sicherlich noch an die Potenzschreibweise erinnern. Ich habe dir noch einmal ein Beispiel mitgebracht.
c² = 4
In dieser Aufgabe möchte wann herausfinden: Welche Zahl quadriert ergibt 4?
Oder einfacher ausgedrückt: Welche Zahl muss ich „hoch 2“ nehmen, dass ich die Zahl 4 erhalte?
Genau!
Daraus lernen wir also:
Wenn ich eine Zahl quadriere („hoch 2“ nehme), dann ist das das Gleiche, wie wenn ich die Zahl mit sich selber multipliziere. |
Schaue dir dazu noch ein paar weitere Beispiele an:
a = 4 → a² = a ˑ a = 4 ˑ 4 = 16
x = 7 → x² = x ˑ x = 7 ˑ 7 = 49
Genauso funktioniert das auch, wenn man zusätzliche Maßeinheiten dazu nimmt:
a = 4 cm → a² = a ˑ a = 4 cm ˑ 4 cm = 16 cm²
x = 7 cm → x² = x ˑ x = 7 cm ˑ 7 cm = 49 cm²
Um hier auf die richtige Lösung zu kommen haben wir die Zahlen miteinander multipliziert ( 4 ˑ 4 = 16 oder 7 ˑ 7 = 49 ) und die Maßeinheiten miteinander multipliziert ( cm ˑ cm = cm² ).
Achtung: Du kannst nur Zahlenwerte miteinander multiplizieren, die auch die gleiche Maßeinheit haben. |
Das, was wir hier wiederholen möchten ist nun die Umkehrung des Quadrierens.
Wie komme ich also vom Quadrat einer Zahl auf die Ausgangszahl?
Beispiel:
c² = 4
Wie kann ich berechnen, was c ist?
Dazu erinnern wir uns an das Quadrieren.
c² = 4 → c² = c ˑ c = 4
Das bedeutet: Wir suchen eine Zahl, die, wenn man sie mit sich selbst multipliziert, 4 ergiebt.
Das ist leicht zu erraten, oder?
c² = c ˑ c = 2 ˑ 2 = 4
2 ˑ 2 = 4
Die Zahl ist also 2.
Man kann also sagen:
2² ergibt 4! (2² = 4 )
Wenn ich die Zahl 2 quadriere, erhalte ich die Zahl 4.
Die gesuchte Zahl ist jedoch nicht immer so leicht zu erraten.
Mit dem Taschenrechner können wir die gesuchten Zahlen aber sehr einfach berechnen!
Du hast auf deinem Taschenrechner folgendes Symbol:
√
Das ist die Wurzeltaste!
Das Wurzelziehen ist die Umkehrung des Quadrierens.
c² = 4 → c ist die Wurzel aus 4
Zusammenfassung
Du bist nun soweit - Lass uns mit dem Satz des Pythagoras weitermachen!