2.Station Fortsetzung: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
K
K
Zeile 81: Zeile 81:
 
|}
 
|}
 
<br>
 
<br>
:Wenn du auf "anzeigen" klickst, siehst du was sich Dia überlegt hat:
+
:Wenn du auf "Anzeigen" klickst, siehst du was sich Dia überlegt hat:
 
:{{Versteckt|1=
 
:{{Versteckt|1=
 
<div style="border: 2px solid #9C9C9C; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid #9C9C9C; background-color:#ffffff; padding:7px;">
 
[[Bild:Porzelt_Dia.jpg|left]]
 
[[Bild:Porzelt_Dia.jpg|left]]
 
<br>
 
<br>
<math>\overline{ZB'}</math> ist |k|-mal so lang wie <math>\overline{ZB}</math>.<br>
+
<br>
 +
<math>\overline{ZB'}</math> ist <math>\mid k \mid</math>-mal so lang wie <math>\overline{ZB}</math>.
 
<br>
 
<br>
 
</div>}}
 
</div>}}

Version vom 10. Juli 2009, 12:14 Uhr

1. Station: Ähnlichkeitsabbildung - Exkurs: Weitere Beispiele einer zentrischen Streckung - 2. Station: Streckungsfaktor - Fortsetzung der 2. Station: Streckungsfaktor - 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors - 4. Station: Zusammenfassung - 5. Station: Übungen - 6. Station: Wissenswertes


Fortsetzung der 2. Station: Streckungsfaktor


Bei dieser zentrischen Streckung musst du dir anschauen, wie sich die Streckenlängen verändern, wenn du k veränderst. Lass dir dafür die Streckenlängen anzeigen!
Was verändert sich? Orientiere dich dabei an nebenstehenden Fragen:

 

1. Wie lang ist ZB', wenn k = 2 ist?

ZB' ist 8 LE lang.
ZB' ist 6 LE lang.
ZB' ist 4 LE lang.

2. Wie lang ist ZB, wenn k = -1 ist?

ZB ist 4 LE lang.
ZB ist 6 LE lang.
ZB ist 8 LE lang.

3. Wie lang ist ZB', wenn k = 3 ist?

ZB' ist 12 LE lang.
ZB' ist 6 LE lang.
ZB' ist 8 LE lang.

4. Für welches k ist ZB' = 6 LE lang?

Für k = 1,5.
Für k = -1,5.
Für k = 2.
Für k = -2,5.

Punkte: 0 / 0


Die Werte, die sich aus der Änderung von k ergeben, wurden in zwei Tabellen zusammengefasst.
In der linken sind die Werte für k von 2 bis 0, in der rechten für k von -2 bis 0.


Arbeitsauftrag :
Betrachte die Tabellen und überlege dir, wie sich die Länge von ZB' im Vergleich zur Länge von ZB in Abhängigkeit von |k| ändert!
 
k ZB ZB'
2 4 8
1.5 4 6
1 4 4
0.5 4 2
0 4 0
k ZB ZB'
-2 4 8
-1.5 4 6
-1 4 4
-0.5 4 2
0 4 0


Wenn du auf "Anzeigen" klickst, siehst du was sich Dia überlegt hat:
Porzelt Dia.jpg



\overline{ZB'} ist \mid k \mid-mal so lang wie \overline{ZB}.



Hier siehst du was das k bedeutet. Merke es dir, denn später wirst du darüber abgefragt!
Porzelt Panto-2.jpg


k bezeichnet man als den Streckungsfaktor. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.



Weiter zur 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors
Zurück zur 2. Station: Streckungsfaktor