Seite 3: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
 
(Eine dazwischenliegende Version von einem Benutzer wird nicht angezeigt)
Zeile 2: Zeile 2:
 
<br>
 
<br>
 
<br>
 
<br>
<br>
+
__NOCACHE__
  
 
<div style="border: 2px solid #0000ee; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid #0000ee; background-color:#ffffff; padding:7px;">
Zeile 52: Zeile 52:
  
 
<div style="border: 2px solid red; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid red; background-color:#ffffff; padding:7px;">
''' Versuche die Rechenregel für die Multiplikation einer zweier Brüche zu finden'''
+
''' Versuche die Rechenregel für die Multiplikation zweier Brüche zu finden'''
 
<br>  
 
<br>  
 
'''Lies dir den Text genau durch und schaue dabei auf die nebenstehenden Beispiele. Ziehe die Wörte mit der linken Maustaste in die Platzhalter. Richtige Antworten bleiben stehen, falsche fallen wieder zurück. Wenn du etwas falsch eingefügt hast, probiere es nochmal.'''<br>  
 
'''Lies dir den Text genau durch und schaue dabei auf die nebenstehenden Beispiele. Ziehe die Wörte mit der linken Maustaste in die Platzhalter. Richtige Antworten bleiben stehen, falsche fallen wieder zurück. Wenn du etwas falsch eingefügt hast, probiere es nochmal.'''<br>  

Aktuelle Version vom 21. März 2019, 18:59 Uhr

2.Station: Multiplikation zweier Brüche




Einführung:

Susi hat am nächsten Tag eine Tafel Schokolade in der Schule dabei!!!
Tom sieht Susi die Schokolade im Klassenzimmer essen und hat sofort auch Heißhunger darauf. Er fragt sie, ob er ein Stück davon haben kann. Susi antwortet: "Ich habe aber nur noch  \frac{4}{5} von der Schokolade!!!" Doch weil sie Tom so gern hat gibt sie ihm dann doch noch  \frac{2}{3} davon ab!!!

Kreuze nun den richtigen Rechenweg an, den die beiden benutzen müssen, um herauszufinden welchen Bruchteil der ganzen Schokolade Tom erhält!
Klicke auf prüfen!, um zu sehen, ob du Recht hast.

(! \frac{2}{3}   von   \frac{4}{5} =  \frac{2*5}{3*4} =  \frac{10}{12} =  \frac{5}{6} )

( \frac{2}{3}   von    \frac{4}{5} =  \frac{2*4}{3*5} =  \frac{8}{15} )

( \frac{2}{3}   von    \frac{4}{5} =  \frac{2 + 4}{3*5} =  \frac{6}{15} )

 



Versuche nun die Aufgaben zu lösen und klicke danach auf prüfen!
Falsche Antworten werden mit rot angezeigt, richtige mit grün!
Es können auch mehrere Lösungen möglich sein (gekürzte Lösungen)!


 \frac{2}{8} *  \frac{2}{4} = (! \frac{2}{32} ) ( \frac{4}{32} ) ( \frac{1}{8} )

 \frac{3}{7} *  \frac{4}{3} = ( \frac{12}{21} ) ( \frac{4}{7} ) (! \frac{28}{9} )

 \frac{2}{4} *  \frac{4}{3} = ( \frac{8}{12} ) ( \frac{2}{3} ) (! \frac{6}{16} )

 




Versuche die Rechenregel für die Multiplikation zweier Brüche zu finden
Lies dir den Text genau durch und schaue dabei auf die nebenstehenden Beispiele. Ziehe die Wörte mit der linken Maustaste in die Platzhalter. Richtige Antworten bleiben stehen, falsche fallen wieder zurück. Wenn du etwas falsch eingefügt hast, probiere es nochmal.

Multiplikation zweier Brüche


            Beispiel:     \frac{2}{5} *  \frac{3}{4}

    1)   Multpliziere die Zähler und die Nenner miteinander.                \frac{2}{5} * \frac{3}{4} =  \frac{2*3}{5*4}                                                                                  

    2)   Kürze das Ergebnis soweit wie möglich!                                                                                                                         

    3)   Wandle den Bruch (wenn möglich) in eine gemischte Zahlum.

 




  • Zusammenfassung:
Sandra Hemrich Bild Merke.jpg

Multiplikation zweier Brüche

  • Man multipliziert zwei Brüche miteinander, indem man die Zähler und die Nenner miteinander multipliziert.
  • Das Ergebnis kürzt man soweit wie möglich oder wandelt es in eine gemischte Zahl um.
  • Das Wort von kann mit * übersetzt werden!!!


                        Allgemein:       
 \frac{a}{b} *  \frac{c}{d} =  \frac{a*c}{b*d}



  • Beispiel oben:

                                     \frac{2}{3}   von    \frac{4}{5}    =    \frac{2*4}{3*5}    =    \frac{8}{15}   


Hier geht`s zur 4. Seite
Hier geht`s zur 2. Seite