Grundlagen der Zerlegungsgleichheit von Figuren: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(Quiz eingefügt)
Zeile 22: Zeile 22:
 
<br>
 
<br>
 
Lösung:<br>
 
Lösung:<br>
Kongruente Dreiecke zu A sind: <u style="color:lightgrey;background:lightgrey">E,F (Drehung); C(Spiegelung);G(Drehung und Spiegelung</u>
+
Kongruente Dreiecke zu A sind: <u style="color:lightgrey;background:lightgrey">E,F (Drehung); C(Spiegelung);G(Drehung und Spiegelung)</u>
 
<br>
 
<br>
 
Welche Dreiecke sind ähnlich zu A??<br>
 
Welche Dreiecke sind ähnlich zu A??<br>
Zeile 30: Zeile 30:
 
Achtung!! Mehrere Antworten sind möglich!
 
Achtung!! Mehrere Antworten sind möglich!
 
<quiz display="simple">
 
<quiz display="simple">
 +
{ Markiere die richtigen Antworten}
 
- alle zueinander ähnlichen Figuren sind kongurent zueinander
 
- alle zueinander ähnlichen Figuren sind kongurent zueinander
 
+ alle zueinander kongruenten Figuren sind ähnlich zueinander
 
+ alle zueinander kongruenten Figuren sind ähnlich zueinander

Version vom 28. Mai 2009, 19:00 Uhr

Auf dieser Seite lernst Du die Eigenschaften der Zerlegungsgleichheit von Figuren kennen.

Inhaltsverzeichnis

Grundlagen der Zerlegungsgleichheit von Figuren

Wiederholung des Kongruenzbegriffes



Weißt Du noch was man unter Kongruenz von Figuren versteht??

Eine Wiederholung kann nicht schaden, oder?

Los geht´s: Teste Dein Wissen!

Ein anderes Wort für Kongruenz ist Deckungsgleichheit


Aufgabe: Wie erzeugt man kongruente Figuren?


Aufgabe: Kongruente Dreiecke


Findest Du alle Dreiecke, die zum Dreieck A kongruent sind?
Gib die Buchstaben an und begründe warum.
Lösung:
Kongruente Dreiecke zu A sind: E,F (Drehung); C(Spiegelung);G(Drehung und Spiegelung)
Welche Dreiecke sind ähnlich zu A??
Antwort:C,D,E,F,G,J sind ähnlich zu A

Kleines Quiz

Achtung!! Mehrere Antworten sind möglich!

1. Markiere die richtigen Antworten

alle zueinander ähnlichen Figuren sind kongurent zueinander
alle zueinander kongruenten Figuren sind ähnlich zueinander
alle kongruenten Figuren haben die gleiche Farbe
alle kongruenten Figuren haben den gleichen Flächeninhalt

Punkte: 0 / 0


Zerlegungsgleichheit von Figuren





Logbucheintrag

Übertrage folgende Definition in Dein Heft:
Merke: Zerlegungsgleichheit von Figuren
Zwei Figuren sind zerlegungsgleich, wenn sie in paarweise kongruente Teilfiguren zerlegt werden können.
Beispiel:


Geogebra.png Definition
Figur A und Figur B sind zerlegungsgleich. Zerlegungsgleiche Figuren besitzen den gleichen Flächeninhalt