Grundlagen der Zerlegungsgleichheit von Figuren: Unterschied zwischen den Versionen
Aus DMUW-Wiki
("Das solltes Du wissen Kasten" eingefügt) |
(→Wiederholung des Kongruenzbegriffes) |
||
Zeile 9: | Zeile 9: | ||
Eine Wiederholung kann nicht schaden, oder? | Eine Wiederholung kann nicht schaden, oder? | ||
− | Los geht´s: Teste Dein Wissen! | + | ===Los geht´s: Teste Dein Wissen!=== |
+ | ---- | ||
<br> | <br> | ||
<div class="schuettel-quiz"> | <div class="schuettel-quiz"> | ||
Zeile 15: | Zeile 16: | ||
</div> | </div> | ||
<br> | <br> | ||
+ | |||
===Aufgabe: Wie erzeugt man kongruente Figuren?=== | ===Aufgabe: Wie erzeugt man kongruente Figuren?=== | ||
<br> | <br> |
Version vom 28. Mai 2009, 19:26 Uhr
Auf dieser Seite lernst Du die Eigenschaften der Zerlegungsgleichheit von Figuren kennen.
Inhaltsverzeichnis |
Grundlagen der Zerlegungsgleichheit von Figuren
Wiederholung des Kongruenzbegriffes
Weißt Du noch was man unter Kongruenz von Figuren versteht??
Eine Wiederholung kann nicht schaden, oder?
Los geht´s: Teste Dein Wissen!
Ein anderes Wort für Kongruenz ist Deckungsgleichheit
Aufgabe: Wie erzeugt man kongruente Figuren?
Aufgabe: Kongruente Dreiecke
Findest Du alle Dreiecke, die zum Dreieck A kongruent sind?
Gib die Buchstaben an und begründe warum.
Lösung:
Kongruente Dreiecke zu A sind: E,F (Drehung); C(Spiegelung);G(Drehung und Spiegelung)
Welche Dreiecke sind ähnlich zu A??
Antwort:C,D,E,F,G,J sind ähnlich zu A
Kleines Quiz
Achtung!! Mehrere Antworten sind möglich!
Das sollest du also wissen
Zwei Figuren sind zueinander kongruent, wenn sie durch Verschiebung,Drehung oder Spiegelung ineinander überführt werden können. Diese drei Abbildungen nennt man daher auch Kongruenz-abbildungen. |
Zerlegungsgleichheit von Figuren
Logbucheintrag
- Übertrage folgende Definition in Dein Heft:
Zwei Figuren sind zerlegungsgleich, wenn sie in paarweise kongruente Teilfiguren zerlegt werden können. Beispiel:
|