Die Quadratische Funktion stellt sich vor: Unterschied zwischen den Versionen
K (Satzbau Satzzeichen Rechtschreibung) |
K (Satzbau Satzzeichen Rechtschreibung) |
||
Zeile 97: | Zeile 97: | ||
Verschiebe die Punkte so, dass sie genau auf dem jeweiligen Graph liegen und überprüfe dann dein Ergebnis durch Anklicken des Kontrollkästchens. | Verschiebe die Punkte so, dass sie genau auf dem jeweiligen Graph liegen und überprüfe dann dein Ergebnis durch Anklicken des Kontrollkästchens. | ||
− | Beginne zunächst mit der linearen Funktion f(x) = x und überlege dir dann, wo die Punkte für die quadratische Funktion f(x) = x² liegen. | + | Beginne zunächst mit der linearen Funktion "f(x) = x" und überlege dir dann, wo die Punkte für die quadratische Funktion "f(x) = x²" liegen. |
<br> | <br> | ||
<br> | <br> | ||
Zeile 119: | Zeile 119: | ||
Überprüfe, welche der folgenden Aussagen richtig oder falsch sind und finde das richtige Ergebnis für x = 3. | Überprüfe, welche der folgenden Aussagen richtig oder falsch sind und finde das richtige Ergebnis für x = 3. | ||
− | Betrachtet werden soll natürlich die quadratische Funktion f(x) = x<sup>2</sup> | + | Betrachtet werden soll natürlich die quadratische Funktion "f(x) = x<sup>2</sup>". |
Zeile 171: | Zeile 171: | ||
− | Hier ist die Einführung der quadratischen Funktion f(x) = x<sup>2</sup> abgeschlossen. | + | Hier ist die Einführung der quadratischen Funktion "f(x) = x<sup>2</sup>" abgeschlossen. |
<br> | <br> | ||
In den folgenden Lerneinheiten wird dann mit dieser Funktion gearbeitet. Neue Parameter werden die Parabel verändern, aber siehe selbst!! | In den folgenden Lerneinheiten wird dann mit dieser Funktion gearbeitet. Neue Parameter werden die Parabel verändern, aber siehe selbst!! |
Version vom 20. August 2009, 08:27 Uhr
Lernpfad
|
Auf gehts:
Heute lernen wir eine neue Klasse von Funktionen kennen!
Es handelt sich dabei um die "Quadratische Funktion".
Aus der 8. Jahrgangsstufe kennst du bereits die "Lineare Funktion".
Wir wollen im Folgenden die quadratische Funktion im Vergleich zur linearen Funktion einführen.
Schau dir jeweils den Graph der linearen und der quadratischen Funktion genau an und bearbeite danach die Aufgaben rechts daneben:
Die quadratische Funktion:
|
Bisher haben wir uns nur den Graph und die Eigenschaften der quadratischen Funktion angeschaut, aber was für eine Funktionsvorschrift verbirgt sich dahinter?
Diesmal bekommst du zuerst das Ergebnis vorgestellst, welches du dir anschließend, in einer Aufgabe näher betrachtest.
Die quadratische Funktion besitzt die Funktionsgleichung der Form: f(x)x2 Dabei gilt: jeder y-Wert ergibt sich aus dem Quadrat des x-Wertes. |
Aufgabe:
Du siehst hier zwei Koordinatensysteme. In jedes Koordinatensystem sind Punkte eingezeichnet, die du nach oben oder nach unten, durch drücken der linken Maustaste, verschieben kannst. Desweiteren gibt es ein Kontrollkästchen "Graph an", mit dem du den Graph zum Schluss zur Überprüfung einblenden kannst.
Verschiebe die Punkte so, dass sie genau auf dem jeweiligen Graph liegen und überprüfe dann dein Ergebnis durch Anklicken des Kontrollkästchens.
Beginne zunächst mit der linearen Funktion "f(x) = x" und überlege dir dann, wo die Punkte für die quadratische Funktion "f(x) = x²" liegen.
Lineare Funktion | Quadratische Funktion |
---|---|
|
KNIFFELAUFGABE:
In dieser Aufgabe soll nochmal eine voher gezeigte Eigenschaft genauer betrachtet werden. Löse dafür die kleine Kniffelaufgabe. Keine Angst, sie ist nicht schwer.
Überprüfe, welche der folgenden Aussagen richtig oder falsch sind und finde das richtige Ergebnis für x = 3.
Betrachtet werden soll natürlich die quadratische Funktion "f(x) = x2".
Vorgabe | Richtig/Falsch | Begründung | |
1. | -f[x] f[x] | falsch |
weil -9 9 |
2. | f[-x] f[x] | richtig |
weil 9 9 |
3. | -f[x] f[-x] | falsch |
weil -9 9 |
4. | -f[-x] f[x] | falsch |
weil -9 9 |
Was sagt dir dieses Ergebnis? (!Nichts) (Das Ergebnis zeigt die Symmetrieeigenschaft der quadratischen Funktion) (Jedem x-Wert, egal ob positiv oder negativ, wird der selbe y-Wert zugeordnet)
Aufgrund der Symmetrieeigenschaft der quadratischen Funktion gilt: f(-x)f(x), da (-x)2(x)2 Begründung: jedem x-Wert, egal ob positiv oder negativ wird der gleiche y-Wert zugeordnet. |
Hier ist die Einführung der quadratischen Funktion "f(x) = x2" abgeschlossen.
In den folgenden Lerneinheiten wird dann mit dieser Funktion gearbeitet. Neue Parameter werden die Parabel verändern, aber siehe selbst!!