Lösungsvorschlag i): Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
K (Die Seite wurde neu angelegt: <div align="left"><math>\Leftarrow</math> Zurück</div>)
 
K
Zeile 1: Zeile 1:
 +
<big>Lösungsweg:</big>
 +
 +
Die Möglichkeiten, dass zwei grüne Gummibärchen hintereinander gezogen werden, sind im folgenden Baumdiagramm dargestellt:
 +
 +
[[Bild:Gummibärchendiagramm1.png|1000px]]
 +
 +
Berechnung der Wahrscheinlichkeit:
 +
 +
P(E<sub>1</sub>) = P({grün;grün;gelb}) + P({grün;grün;rot}) + P({gelb;grün;grün}) + P({rot;grün;grün} = <math>\frac{2}{5}</math> <math>\cdot</math> <math>\frac{1}{4}</math> <math>\cdot</math> <math>\frac{2}{3}</math> + <math>\frac{2}{5}</math> <math>\cdot</math> <math>\frac{1}{4}</math> <math>\cdot</math> <math>\frac{1}{3}</math> + <math>\frac{2}{5}</math> <math>\cdot</math> <math>\frac{2}{4}</math> <math>\cdot</math> <math>\frac{1}{3}</math> + <math>\frac{1}{5}</math> <math>\cdot</math> <math>\frac{2}{4}</math> <math>\cdot</math> <math>\frac{1}{3}</math> = <math>\frac{1}{5}</math> = 20% 
 +
 +
 +
 
<div align="left">[[Zusammengesetzte Zufallsexperimente und Pfadregeln|<math>\Leftarrow</math> Zurück]]</div>
 
<div align="left">[[Zusammengesetzte Zufallsexperimente und Pfadregeln|<math>\Leftarrow</math> Zurück]]</div>

Version vom 28. September 2009, 00:20 Uhr

Lösungsweg:

Die Möglichkeiten, dass zwei grüne Gummibärchen hintereinander gezogen werden, sind im folgenden Baumdiagramm dargestellt:

Gummibärchendiagramm1.png

Berechnung der Wahrscheinlichkeit:

P(E1) = P({grün;grün;gelb}) + P({grün;grün;rot}) + P({gelb;grün;grün}) + P({rot;grün;grün} = \frac{2}{5} \cdot \frac{1}{4} \cdot \frac{2}{3} + \frac{2}{5} \cdot \frac{1}{4} \cdot \frac{1}{3} + \frac{2}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} + \frac{1}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} = \frac{1}{5} = 20%


\Leftarrow Zurück