Kongruenzabbildungen/Drehung/Seite 5: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 20: Zeile 20:
 
<div style="border: 2px solid #FFFFFF; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid #FFFFFF; background-color:#ffffff; padding:7px;">
 
{|<br>
 
{|<br>
|<ggb_applet height="340" width="550" showResetIcon="true" filename="Drehung_e)MM.ggb" />||
+
|<ggb_applet height="335" width="550" showResetIcon="true" filename="Drehung_e)MM.ggb" />||
 
<quiz display="simple">
 
<quiz display="simple">
 
{Welche Aussagen kannst du über die Seiten des Körpers treffen?}
 
{Welche Aussagen kannst du über die Seiten des Körpers treffen?}

Version vom 16. Dezember 2009, 10:33 Uhr

Teilaufgabe e)

Drehung_e)MM.png Schauen wir uns jetzt den Körper des Flugzeugs an..
1. Fülle dazu den Lückentext aus, indem du die verdrehten Wörter entschlüsselst!

Eine Figur die durch Drehung um 180° um einen Punkt Z auf sich selbst abgebildet wird, heißt punktsymmetrisch. Der Drehpunkt wird auch Symmetriezentrum genannt. Er ist der einzige Punkt der auf sich selbst abgebildet wird und ist somit ein Fixpunkt.
Die Punktsymmetrie ist ein Sonderfall der Drehsymmetrie.

Punkte: 0 / 0


2. Entscheide jetzt, welche Aussagen auf den Körper des Flugzeugs zutreffen!

1. Welche Aussagen kannst du über die Seiten des Körpers treffen?

Gegenüberliegende Seiten sind gleich lang
Alle vier Seiten sind gleich lang
Gegenüberliegende Seiten sind parallel

2. Was trifft auf die Diagonalen zu?

Die Diagonalen stehen senkrecht aufeinander
Die Diagonalen halbieren sich gegenseitig
Die Diagonalen sind gleich lang

3. Welche geometrische Figur stellt der Körper des Flugzeugs dar?

Trapez
Parallelogramm
Drache

4. Ist der Körper des Flugzeugs symmetrisch?

Ja, der Körper ist punktasymmetrisch
Ja, der Körper ist drehsymmetrisch
Nein, es liegt keine Symmetrie vor

5. Welche Koordinaten hat das Symmetriezentrum? ).

(4|3.5)
(3.5|4)
(3|4)

Punkte: 0 / 0

Navigationsmenü