Quadratische Funktionen: Unterschied zwischen den Versionen
K (→Aufgabe:) |
|||
Zeile 22: | Zeile 22: | ||
{|border="0" cellspacing="0" cellpadding="4" | {|border="0" cellspacing="0" cellpadding="4" | ||
− | |align = "left" width="450"| Im rechten Bild siehst du wieder die Parabel von oben. Man kann für sie auch die Gleichung '''<math>f(x)=ax^2</math>''' aufstellen, wobei <math>a = 1</math> ist. In diesem Fall heißt die Funktion '''Normalparabel'''. Doch was passiert, wenn man die Zahl a verändert? | + | |align = "left" width="450"| |
+ | Im rechten Bild siehst du wieder die Parabel von oben. Man kann für sie auch die Gleichung '''<math>f(x)=ax^2</math>''' aufstellen, wobei <math>a = 1</math> ist. In diesem Fall heißt die Funktion '''Normalparabel'''. Doch was passiert, wenn man die Zahl a verändert? | ||
Zeile 46: | Zeile 47: | ||
|valign="top"| | |valign="top"| | ||
+ | <ggb_applet width="400" height="350" version="3.2" ggbBase64="UEsDBBQACAAIABOlTjwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1stVbLbts6EF23X0Fw1RaorYft2oCVoo9NgLRduDeLu7gAJY1kNpQokFQi5+s7Q0q2GzRBCtyuRM2MhjPnnBl7+35oFLsFY6VuMx7PIs6gLXQp2zrjvavervn7i5fbGnQNuRGs0qYRLuPpLOFk7+XFyxdbu9d3TCgfci3hLuOVUBY4s50BUdo9gPvFLvpBKinM4Vv+AwpnT46Q5LLterzFmR5tRVNeSTu9zv2FnZLus7yVJRimdJHx1RJLx9M1GCcLoTK+iIIlyXjywImmlLx7beS9bh2Fn5JXaGHMyntARFZk2859o1voCyVLKVpqxteBQYzdydLtM75eLzAlyHqPtS6jNGQrtDbl7mAdNGz4F4zGcqJ0tlgmySLdLNfLd2mE3x2CK42XxIHFIoGSzNarNFpFm/VmtUiTFcadXFG4AG534BwSZpkYwE6o1UaW5+dL+1Gr8gh0p2XrPonO9cZznY6mnTtQeqzBUCMf2lrBaEuQij0UN7kedgGcNKT+fuj8J76cvP6klTbMEOxLDBifeXj6GKrzGBX5mMhHjDko6dEfbxIf4Z95ePooJdtQ2th3PDUdR9M10jIyEKIo0QkOJXJAxjnrW+muphdUxs3YaRziv/ZNjqNxro1jyvh/SrmdPxDV9gZMCypIp0Vee91bdksSDdT5OkooZIOvwTECIoisf7CAYC2hNjDVHeYqwOW90bk8H5i386kIqsFirYXDBYH9OOqF5tfh7GT80lKril3jelCclcKRmyZFQQM4Rs5Lo+0bMLI4wiQ4XY339eOt8SRmv0m0XwoPoD1xgO6TxGh2zuSDC6TbCzzN4lEk4oAr4rxjn++LLqerx4uV3yWNxDX41s9gIwYcMzqJ3GrVO9gViGd7pQvh/LoM9Y3TH0c0kQy/SRZ0OOBhk9KpkgOcBu/3O+ekZbdH0bRgrR84dz5aokXOPRG4TTpqMiJZdUDp/e6ewlmHffu5PmoGhRY4IXYG3MuWdn5Al2W8xsU/YM761fCaZWz471Uyi177D3/lsupbL4YjMTV/dgN/ym70CLfRk9x+qyoLjpjYeBqWyW+JTx4D9QzTJxF9VtNPwY65RtSrgLpgb47Is2dAX/096B8frOeCT78OiP67zVNj94cIzs/Xkf9dHv+YXPwEUEsHCCOo/25dAwAAyggAAFBLAQIUABQACAAIABOlTjwjqP9uXQMAAMoIAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAlwMAAAAA" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" /> | ||
− | |||
Version vom 14. Februar 2010, 21:53 Uhr
Quadratische Funktionen
Auf der rechten Seite ist eine andere quadratische Funktion abgebildet. Ihr Funktionsterm hat die Form x². Wie wir schon festgestellt haben, unterscheiden sich die Graphen quadratischer Funktionen stark von den Graphen linearer Funktionen.
|
|
Im rechten Bild siehst du wieder die Parabel von oben. Man kann für sie auch die Gleichung aufstellen, wobei ist. In diesem Fall heißt die Funktion Normalparabel. Doch was passiert, wenn man die Zahl a verändert?
Aufgabe:Verändere a mithilfe des Schiebreglers in der nebenstehenden Graphik und beobachte die Veränderung. Als Orientierung dient dir der Graph x². Ist a>0, dann ist die Parabel enger (gestreckt) als die Normalparabel. Für 0< a < 1 ist die Parabel weiter (gestaucht) als die Normalparabel. Ist a negativ, so ist die Parabel nach unten geöffnet .
|
|