Flächeninhalt ebener Figuren- Teil 2: Unterschied zwischen den Versionen
(→Herleitungsidee 2: Lösungen eingefügt) |
(→Herleitungsidee 2: Lösungen eingefügt) |
||
Zeile 183: | Zeile 183: | ||
2.'''Welche Figur''' ensteht? {{Lösung versteckt |Es entsteht ein Rechteck}}<br> | 2.'''Welche Figur''' ensteht? {{Lösung versteckt |Es entsteht ein Rechteck}}<br> | ||
3.Wie erhält man die Figur? {{Lösung versteckt |Durch Zerlegung des Ursprungsdreiecks und Ergänzung}}<br> | 3.Wie erhält man die Figur? {{Lösung versteckt |Durch Zerlegung des Ursprungsdreiecks und Ergänzung}}<br> | ||
− | 5.Um welche Punkte werden die Teildreiecke gedreht? Um wieviel Grad werden sie gedreht?{{Lösung versteckt |Die Teildreiecke werden um die Seitenmittelpunkte gedreht. Sie werden um 180° gedreht }}<br> | + | 5.Um welche Punkte werden die Teildreiecke gedreht? Um wieviel Grad werden sie gedreht?{{Lösung versteckt |Die Teildreiecke werden um die Seitenmittelpunkte gedreht. Sie werden um 180° gedreht. Es handelt sich also um eine Kongruenzabbildung. }}<br> |
6.'''Welche Höhe''' besitzt die neue Figur, '''im Vergleich''' zum Ursprungsdreieck?{{Lösung versteckt |Die Höhe des Rechtecks ist halb so groß, wie die Höhe des Ausgangsdreiecks}}<br> | 6.'''Welche Höhe''' besitzt die neue Figur, '''im Vergleich''' zum Ursprungsdreieck?{{Lösung versteckt |Die Höhe des Rechtecks ist halb so groß, wie die Höhe des Ausgangsdreiecks}}<br> | ||
7.Welche Länge besitzt ihre Grundseite?{{Lösung versteckt |Die Grundseite ist genauso lang, wie die des Ausgangsdreiecks.}} | 7.Welche Länge besitzt ihre Grundseite?{{Lösung versteckt |Die Grundseite ist genauso lang, wie die des Ausgangsdreiecks.}} | ||
Zeile 194: | Zeile 194: | ||
{| <br> | {| <br> | ||
|<ggb_applet height="500" width="450" showResetIcon="true" filename="Ebert_DreieckVertiefungsaufgabe2.ggb"/>|| '''Aufgabenstellung:''' | |<ggb_applet height="500" width="450" showResetIcon="true" filename="Ebert_DreieckVertiefungsaufgabe2.ggb"/>|| '''Aufgabenstellung:''' | ||
− | + | 1. Wie wurde das Dreieck zerlegt? {{Lösung versteckt | Es wurde die zur Grundseite parallele Strecke zwischen den Seitenmittelpunkten eingezeichnet. }} | |
− | + | 2.'''Welche Figur ensteht''' bei der Ergänzung? {{Lösung versteckt | Es enstekt ein Paralellogramm}} | |
− | + | 3.'''Wie''' entsteht diese Figur? {{Lösung versteckt | Das Parallelogramm ensteht durch Zerlegung des großen Dreiecks in ein kleines Teildreieck und ein Trapez. Durch Drehen des kleinen Teildreiecks ergänzt man das Trapez zum Parallelogramm}} | |
− | + | 4. Um welchen Punkt wird das kleine Teildreieck gedreht? Um wieviel Grad wird es gedreht? {{Lösung versteckt | Das kleine Teildreieck wird um 180 ° um einen Seitenmittelpunkt gedreht.Damit ist klar, dass es sich um eine Kongruenzabbildung handelt.}} | |
− | + | 5. Welche '''Höhe''' besitzt die '''neue Figur''' im Vergleich zum Dreieck {{Lösung versteckt | Die Höhe des Parallelogramms ist halb so groß, wie die des Ausgangsdreiecks. Das Paralellogramm besitzt aber die gleiche Länge der Grundseite}} | |
|} | |} | ||
</div> | </div> | ||
Zeile 208: | Zeile 208: | ||
{| <br> | {| <br> | ||
|<ggb_applet height="450" width="580" showResetIcon="true" filename="Ebert_DreieckVertiefungsaufgabe3.ggb"/>|| '''Aufgabenstellung:''' | |<ggb_applet height="450" width="580" showResetIcon="true" filename="Ebert_DreieckVertiefungsaufgabe3.ggb"/>|| '''Aufgabenstellung:''' | ||
− | + | ||
− | + | 1.'''Welche Figur ensteht''' bei der Ergänzung? {{Lösung versteckt | Es entsteht ein Rechteck }} | |
− | + | 2. Um welchen Punkt werden jeweils die Teildreiecke gedreht? Um wieviel Grad werden sie gedreht? {{Lösung versteckt |Die Teildreiecke werden jeweils um die Seitenmittelpunkte gedreht, dabei dreht man um 180°. Dies ist eine Kongruenzabbildung}} | |
− | + | 3.'''Welche Höhe''' besitzt die erhaltene Figur? {{Lösung versteckt | Die Höhe des Rechtecks entspricht der Höhe des Ausgangsdreiecks}} | |
− | + | 4.'''Zeige''', dass die '''Grundseite der neuen Figur halb so lang '''ist, wie die Grundseite des Dreiecks! | |
|} | |} | ||
</div> | </div> |
Version vom 5. Juli 2009, 15:10 Uhr
Flächeninhalt Dreieck
Einstieg
Vorüberlegungen: Dem Dreieck auf der Spur
1. Teil: Wie ändert sich der Flächeninhalt?
Aufgabenstellung: Ziehe am Eckpunkt C des Dreiecks ABC. Beobachte, wie sich der Flächeninhalt verändert.
|
2. Teil: TITEL
Aufgabenstellung:
C bewegt sich auf der Parallelen zur Grundseite [AB]. Ihr Abstand entspricht der Höhe im Dreieck!
|
Die Flächeninhaltsformel des Dreiecks
Mathematik scheint manchmal wie Zauberei...Warum?? Das erfährst Du im nächsten Abschnitt.
Fast wie Zauberei! Zweimal Unbekannt = Bekannt?
Wir wollen die Flächeninhaltsformel für Dreiecke herausfinden.
Doch, wie könnte man das nur machen?
In diesem Applet siehst Du das Dreieck ABC. Bearbeite die nebenstehende Aufgabenstellung.
Aufgabenstellung:
|
Leite daraus die Flächeninhaltsformel für Dreiecke her!
Bedenke, welche Flächeninhaltsformel Du vor Kurzem erst Kennen gelernt hast
Aufgabenstellung: Ergänze die fehlenden Felder in der Rechnung.
Gesucht: FDreieck
FDreieck = ??
FParallelogramm = g h
FParallelogramm = FDreieck + FDreieck
FParallelogramm = 2 FDreieck
g h = 2 FDreieck
g h = FDreieck
Super! Du hast die Flächeninhaltsformel für Dreiecke gefunden.
Begründe, warum man die Formel auf diesem Wege herleiten kann.
In dem Modell, das für die Herleitung der Flächeninhaltsformel hilfreich war, wurde die Ergänzungsgleichheit genutzt. Man ergänzt das Dreieck mit einem, zu diesem Dreieck, kongruenten zweiten Dreieck zu einem Parallelogramm. Dieses besitzt dieselbe Länge der Grundseite und dieselbe Länge der Höhe, wie das Ausgangsdreieck. Somit lässt sich Der Flächeninhalt des Parallelogramms berechnen. Da sich die Gesamtfläche des Parallelogramms aus den zwei Teilflächen der zueinander kongruenten Dreiecke zusammensetzt ist ein Dreieck damit halb so groß wie das Parallelogramm mit derselben Grundseite und Höhe.
- Aber nicht nur durch das Prinzip der Ergänzung kann man die Flächeninhaltsformel herleiten Ein ähnliches Prinzip hast Du auch schon kennen gelernt. Fülle den folgenden Lückentext aus.
Zerlegungsgleichheit ist das Stichwort! Ausgehend vom Parallelogramm lässt sich die Flächeninhaltsformel für Dreiecke herleiten, indem man ein Parallelogramm geeignet halbiert. Man halbiert hier dies entlang einer Diagonalen. Diese Halbierung zerlegt das Parallelogramm in zwei kongruente Dreiecke, die jeweils den gleichen Flächeninhalt besitzen und deren Gesamtflächeninhalt, also dem des Parallelogramms entspricht. Ein Dreieck ist damit halb(4 geteilt durch 2) so groß wie ein Parallelogramm mit derselben Grundseite und Höhe (vier Buchstaben).
Wie Du siehst gibt es mehrere Ansatzmöglichkeiten, um ein Problem, wie die Suche nach der Flächeninhaltsformel zu lösen.
Zusammenfassung
Übertrage den roten Merkkasten in dein Heft, damit Du die Flächeninhaltsformel für Dreiecke auch Zuhause nachschauen kannst:
Den Flächeninhalt des Dreiecks berechnet man durch: FDreieck = |
|
Vertiefen und Erweitern
Du hast nun eine Möglichkeit kennen gelernt, wie man die Flächeninhaltsformel für Dreiecke herleiten kann.
Dies ist aber natürlich nicht der einzige Lösungsansatz.
Im nächsten Abschnitt lernst Du weitere kennen.
Versuche die Lösungsideen nachzuvollziehen und bearbeite die Aufgabenstellungen. Leite daraus jeweils algebraisch die Flächeninhaltsformel für Dreiecke her.
Herleitungsidee 2
Aufgabenstellung:
Man zeichnet die Mittelparallele des Dreiecks zur Grundseite ein und schneidet diese mit der Höhe zu dieser Grundseite.
2.Welche Figur ensteht?
Es entsteht ein Rechteck
Durch Zerlegung des Ursprungsdreiecks und Ergänzung
Die Teildreiecke werden um die Seitenmittelpunkte gedreht. Sie werden um 180° gedreht. Es handelt sich also um eine Kongruenzabbildung.
Die Höhe des Rechtecks ist halb so groß, wie die Höhe des Ausgangsdreiecks
Die Grundseite ist genauso lang, wie die des Ausgangsdreiecks.
|
</div>
Aufgabenstellung:
1. Wie wurde das Dreieck zerlegt?
Es wurde die zur Grundseite parallele Strecke zwischen den Seitenmittelpunkten eingezeichnet.
2.Welche Figur ensteht bei der Ergänzung?
Es enstekt ein Paralellogramm
3.Wie entsteht diese Figur?
Das Parallelogramm ensteht durch Zerlegung des großen Dreiecks in ein kleines Teildreieck und ein Trapez. Durch Drehen des kleinen Teildreiecks ergänzt man das Trapez zum Parallelogramm
4. Um welchen Punkt wird das kleine Teildreieck gedreht? Um wieviel Grad wird es gedreht?
Das kleine Teildreieck wird um 180 ° um einen Seitenmittelpunkt gedreht.Damit ist klar, dass es sich um eine Kongruenzabbildung handelt.
5. Welche Höhe besitzt die neue Figur im Vergleich zum Dreieck
Die Höhe des Parallelogramms ist halb so groß, wie die des Ausgangsdreiecks. Das Paralellogramm besitzt aber die gleiche Länge der Grundseite
|
Aufgabenstellung:
1.Welche Figur ensteht bei der Ergänzung?
Es entsteht ein Rechteck
2. Um welchen Punkt werden jeweils die Teildreiecke gedreht? Um wieviel Grad werden sie gedreht?
Die Teildreiecke werden jeweils um die Seitenmittelpunkte gedreht, dabei dreht man um 180°. Dies ist eine Kongruenzabbildung
3.Welche Höhe besitzt die erhaltene Figur?
Die Höhe des Rechtecks entspricht der Höhe des Ausgangsdreiecks
4.Zeige, dass die Grundseite der neuen Figur halb so lang ist, wie die Grundseite des Dreiecks! |
Übung
- In dieser Tabelle sind einige Maße von verschiedenen Dreiecken angegeben, andere Maße fehlen.
- Arbeitsauftrag:
Berechne die fehlenden Werte und fülle die Lücken aus. Ordne auch das passende Dreieck zu.