Grundlagen der Zerlegungsgleichheit von Figuren: Unterschied zwischen den Versionen
(→2.3 Das Prinzip der Zerlegungsgleichheit: neues Bild, Kasten) |
(→Ergänzungsgleichheit von Figuren: Bilder geändert, Kasten eingefügt, Schrift formatiert usw...) |
||
Zeile 216: | Zeile 216: | ||
===Ergänzungsgleichheit von Figuren=== | ===Ergänzungsgleichheit von Figuren=== | ||
+ | ====Du hast nun das Prinzip der Zerlegungsgleichheit kennen gelernt. Hier lernst Du noch eine weitere Eigenschaft der Zerlegungsgleichheit==== | ||
+ | <div style="border: 2px solid blue; background-color:#ffffff; padding:7px;"> | ||
+ | {| | ||
+ | :'''Das Trapez und das Rechteck sind zerlegungsgleich, denn sie können z.B. in jeweils vier zueinander kongruente Dreiecke zerlegt werden. Betrachte Dir dazu das nachfolgende Bild:'''<br> | ||
+ | [[Bild:Ebert_Ergänzungsgleichheit1neu.jpg|center]]<br> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | :'''Was bedeutet Ergänzungsgleichheit? Fülle dazu die Lücken aus: | + | :'''Man nennt dieses Rechteck und das Trapez aber auch <span style="color: blue">ergänzungsgleich</span> Betrachte Dir dazu das nachfolgende Bild:'''<br> |
+ | [[Bild:Ebert_Ergänzungsgleichheit2neu.jpg|center]]<br> | ||
+ | |||
+ | ::::'''Was bedeutet Ergänzungsgleichheit? Fülle dazu die Lücken aus: | ||
''' | ''' | ||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
− | Das Trapez und das Rechteck sind '''ergänzungsgleich''', das sie durch Ergänzung mit '''kongruenten Teilfiguren''', in diesem Fall mit je zwei blauen Dreiecken in zueinander kongruente Figuren A und B überführt werden können. | + | Das '''Trapez''' und das Rechteck sind '''ergänzungsgleich''', das sie durch Ergänzung mit '''kongruenten Teilfiguren''', in diesem Fall mit je '''zwei''' blauen Dreiecken in zueinander kongruente Figuren '''A und B''' überführt werden können. |
</div> | </div> | ||
+ | |} | ||
+ | </div> | ||
+ | <br> | ||
<br> | <br> | ||
+ | :::: '''Merke Dir folgende Definition zur Ergänzungsgleichheit gut und übetrage sie in Dein Heft!''' | ||
<br> | <br> | ||
− | |||
<div style="border: 2px solid red; background-color:#ffffff; padding:7px;"> | <div style="border: 2px solid red; background-color:#ffffff; padding:7px;"> | ||
{| | {| | ||
− | | [[Bild:Ebert_MotivatorMerke.jpg]] | + | | [[Bild:Ebert_MotivatorMerke.jpg]]|| |
− | || Zwei Figuren sind <span style="color: red">ergänzungsgleich</span>, wenn man sie durch <span style="color: red">Ergänzung mit kongruenten Teilfiguren</span> in <span style="color: red">zerlegungsgleiche Figuren</span> umwandeln kann. <span style="color: red">Ergänzungsgleiche</span> Figuren sind daher auch <span style="color: red">zerlegungsgleich</span>.Ergänzungsgleiche Figuren besitzen den gleichen Flächeninhalt. | + | * '''Zwei Figuren sind <span style="color: red">ergänzungsgleich</span>, wenn man sie durch <span style="color: red">Ergänzung mit kongruenten Teilfiguren</span> in <span style="color: red">zerlegungsgleiche Figuren</span> umwandeln kann.''' |
+ | * '''<span style="color: red">Ergänzungsgleiche</span> Figuren sind daher auch <span style="color: red">zerlegungsgleich</span>.''' | ||
+ | * '''Ergänzungsgleiche Figuren besitzen den <span style="color: red">gleichen Flächeninhalt.</span>''' | ||
+ | [[Bild:Ebert_Ergänzungsgleichheit2.jpg|center]] | ||
|} | |} | ||
</div> | </div> |
Version vom 12. Juli 2009, 12:42 Uhr
1. Grundlagen der Zerlegungsgleichheit von Figuren
Auf dieser Seite lernst Du die Eigenschaften der Zerlegungsgleichheit von Figuren kennen.
Bearbeite die Aufgaben sorgfältig!
Nicht mogeln...schaue erst die Lösungen an, wenn du die Aufgaben selbstsändig bearbeitet hast!
Denn nur so lernst du am Besten!
1.1 Wiederholung des Kongruenzbegriffes
- Weißt Du noch was man unter Kongruenz von Figuren versteht??
- Eine Wiederholung kann sicher nicht schaden.
1.2 Los geht´s: Teste Dein Wissen!
- Ein anderes Wort für Kongruenz ist Deckungs-gleichheit
- Hinweis: Kongruente Figuren kann man zur Deckung bringen
Aufgabe: Kongruente Dreiecke
- Findest Du alle Dreiecke, die zum Dreieck A kongruent sind?
Gib die Buchstaben an.
- War Deine Lösung richtig?
Wie erzeugt man kongruente Figuren?
|
Das sollest du also wissen
Zwei Figuren sind zueinander kongruent, wenn sie durch Verschiebung,Drehung oder Spiegelung ineinander überführt werden können. Diese drei Abbildungen nennt man daher auch Kongruenz-abbildungen. Kongruente Figuren habe den gleichen Flächeninhalt. |
Wofür können wir die Kongruenz von Figuren gebrauchen?
- Du kennst sicher ein paar Anwendungsbeispiele wofür man die Eigenschaften der man die Kongruenz von Figuren nutzen kann.
Dazu gehört zum Beispiel die Konstruktion von Dreiecken, wofür man die Kongruenzsätze benötigt. Kennst Du noch alle davon?
- Ordne die richtige Abkürzung der Beschreibung zu!
Zwei Dreiecke, die in ihren drei Seitenlängen übereinstimmen, sind kongruent: SSS-Satz
Zwei Dreiecke, die in einer Seitenlänge und in den dieser Seite anliegenden Winkeln übereinstimmen, sind kongruent: WSW-Satz
Zwei Dreiecke, die in zwei Seitenlängen und in dem eingeschlossenen Winkel übereinstimmen, sind kongruent: SWS-Satz
Zwei Dreiecke, die in zwei Seitenlängen und in jenem Winkel übereinstimmen, der der längeren Seite gegenüberliegt, sind kongruent: SsW-Satz
- Im dem nächsten Abschnitt lernst Du ein weiteres Anwendungsbeispiel für die Kongruenz kennen
Zerlegungsgleichheit von Figuren
Einführung
Kapitän Check Aufgabe: Welche ist die größte Insel?
- Aufgabenstellung:
- Du siehst hier die 3 schwarzen Inseln. Darunter befinden sich alle Teilfiguren, mit denen man die Inseln vollständig zusammensetzen kann. Du kannst diese Teilfiguren auf die Inseln ziehen.
- Überlege Dir zunächst selbst, wo die nächste Teilfigur platziert werden könnte.
- Wenn Du eine Hilfestellung brauchst, dann Klicke die Kontrollkästchen an.
- Was fällt Dir auf? Welche ist die größte Insel?
- Trage hier den Namen der Insel ein, die am größten ist:
Die größte Insel ist Isola Bella (entweder Isola Grande, Isola Bella oder Isola Piccola eintragen)
- Begründe Deine Antwort, warum ist diese Insel die größte?
Die Figuren A und C sind gleich groß, da sie mit sechs Teilfiguren ausgelegt werden können, die jeweils kongruent zueinander sind.
Figur B kann mit einer Teilfigur, dem grauen Dreieck mehr ausgelegt werden, deshalb ist sie die größte der drei Inseln.
2.3 Das Prinzip der Zerlegungsgleichheit
FQuadrat = F1 + F2 + F3 + F4 + F5 =FSechseck |
- Logo fasst hier Deine Beobachtungen kurz zusammen. Übertrage Sie in Dein Heft:
- Maja möchte Dir auch noch etwas sagen:
- Hierzu siehst Du ein kleines Beispiel:
- Kannst Du zeigen, dass die beiden folgenden Figuren den gleichen Flächeninhalt haben?
Zusammenfassung
- Übertrage folgende Definition in Dein Heft:
Ergänzungsgleichheit von Figuren
Du hast nun das Prinzip der Zerlegungsgleichheit kennen gelernt. Hier lernst Du noch eine weitere Eigenschaft der Zerlegungsgleichheit
- Merke Dir folgende Definition zur Ergänzungsgleichheit gut und übetrage sie in Dein Heft!
Vertiefen und Übung
Klassenzimmer streichen
Eine Schulklasse hat sich entschieden die Rückwand des Klassenzimmers neu zu streichen. Da die Mädchen gelb und die Jungen grün streichen wollen, haben sie sich geeinigt die Rückwand jeweils in der Hälfte der Farben zu streichen.
- Hilf der Klasse bei den Designvorschlägen.
- Hier siehst Du die Rückwand des Klassenzimmers. Sie ist 4 Meter hoch und 6 Meter breit.
Das Rechteck stellt die Rückwand des Klassenzimmers dar. Dieses Bild zeigt eine Möglichkeit die Rückwand zur Hälfte grün und zur anderen Hälfte gelb zu streichen.
(Bild wird noch eingefügt)
Wieviele Vorschläge hast Du? Übertage das Rechteck in Dein Heft und sei kreativ! Aber achte auch auf die Aufgabenstellung!
- Du findest hier ein paar Lösungsvorschläge:
Hast Du mehr Ideen gefunden?? Prima!
Aufgabenstellung:
Zeige, warum im Lösungsvorschlag 1, 3, 7 und 8 jeweils genau die Hälfte grün bzw. gelb gestrichen wird. Begründe mit dem, was Du bisher über Flächeninhalte gelernt hast. (Änderung in Multiple Choice! und Bilder einfügen.)
- Rechteck 1 wurde in 2 kongruente Teilrechtecke zerlegt, die jeweils grün bzw. gelb gefärbt sind. Da zueinander kongruente Figuren den gleichen Flächeninhalt besitzen ist genau die Hälfte des Rechtechs grün bzw. gelb.
- Rechteck 3 wurde entlang der Diagonalen halbiert. Es entstehen dabei 2 kongruente Teildreiecke. Argumentation weiter wie für Rechteck 1.
- Das Rechteck 7 wurde in 4 kongruente Dreiecke zerlegt. Je 2 davon wurden grün bzw. gelb gefärbt. Da wurde je die Hälfte grün bzw. gelb gefärbt.
- Dieses 8. Rechteck wurde in 8 kongruente Teildreiecke zerlegt. Je 4 davon wurden grün bzw. gelb gefärbt. Agrumentation analog wie für Rechteck 7