3.Station: Unterschied zwischen den Versionen
K |
|||
Zeile 5: | Zeile 5: | ||
==3. Station: Zweiter Vierstreckensatz== | ==3. Station: Zweiter Vierstreckensatz== | ||
− | + | Früher wurden die Höhen von Pyramiden, Bäumen, Türmen usw. berechnet, indem man einen Stab lotrecht so aufstellte,<br> | |
− | + | dass das Ende seines Schattens mit dem Ende des Schattens des Objektes zusammenfiel. Dabei wurde die Länge des Schattens<br> | |
− | + | des Objektes und die Länge des Schattens vom Stab gemessen. <br> | |
− | [[Bild:Porzelt_4-Streckensatz-Kletterwand.jpg]] | + | [[Bild:Porzelt_4-Streckensatz-Kletterwand.jpg]]<br> |
− | + | Wie du auf dem Bild sehen kannst, hat Panto einen Stab vergessen und sich selbst platziert. Panto weiß, dass die Kletterwand <br> | |
− | + | 6 m hoch ist, nur hat er mit zunehmendem Alter vergessen, wie groß er ist. <br> | |
− | + | Hilf ihm, seine Größe herauszufinden:<br> | |
− | + | Zunächst musst du wieder eine passende Formel zur Berechnung der gesuchten Strecke x herleiten! Setze wieder die richtige <br> | |
− | + | Aussage in die passende Lücke ein: <br> | |
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
<math>\overline{ZA'} =</math> '''<math>\mid k\mid \cdot \overline{ZA}</math>''' <math>\mathit{und}\ </math> <math>\overline{A'B'} =</math> '''<math>\mid k\mid \cdot \overline{AB}</math>'''<br> | <math>\overline{ZA'} =</math> '''<math>\mid k\mid \cdot \overline{ZA}</math>''' <math>\mathit{und}\ </math> <math>\overline{A'B'} =</math> '''<math>\mid k\mid \cdot \overline{AB}</math>'''<br> | ||
Zeile 21: | Zeile 21: | ||
<math>{\overline{ZA'}\over\overline{ZA}} = {\overline{A'B'}\over\overline{AB}}</math><br> | <math>{\overline{ZA'}\over\overline{ZA}} = {\overline{A'B'}\over\overline{AB}}</math><br> | ||
</div> | </div> | ||
− | + | Fantastisch! Du hast hier den '''zweiten Vierstreckensatz''' hergeleitet. <br> | |
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;"> | <div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;"> | ||
[[Bild:Porzelt_Panto-2.jpg|left]] | [[Bild:Porzelt_Panto-2.jpg|left]] | ||
<br> | <br> | ||
− | + | Dieser Satz sagt aus, dass sich die Streckenabschnitte auf den Parallelen wie die zugehörigen Streckenlängen (von Z ausgehend<br> | |
− | + | auf einer Geraden verhalten.<br> | |
</div> | </div> | ||
− | + | Trage hier deine Lösung mit Angabe der Einheit (m) ein!<br> | |
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
<math>{10\ m \over 0,5\ m} = {6\ m \over x}</math><br> | <math>{10\ m \over 0,5\ m} = {6\ m \over x}</math><br> | ||
Zeile 37: | Zeile 37: | ||
</div> | </div> | ||
<br> | <br> | ||
− | + | Panto hat natürlich versucht auf die Kletterwand zu klettern. Denkst du, er hat es geschafft? Wenn du es wissen willst,<br> | |
− | + | dann lass es dir anzeigen! <br> | |
− | + | {{Versteckt| | |
[[Bild:Porzelt_4-Streckensatz-Kletterwand-Lösung.jpg]]|}} | [[Bild:Porzelt_4-Streckensatz-Kletterwand-Lösung.jpg]]|}} | ||
<br> | <br> |
Version vom 12. Juli 2009, 20:57 Uhr
1. Station: Erster Vierstreckensatz - Schenkellösung - 2. Station: Erster Vierstreckensatz - Abschnittlösung - 3. Station: Zweiter Vierstreckensatz - 4. Station: Zusammenfassung - 5. Station: Übung
3. Station: Zweiter Vierstreckensatz
Früher wurden die Höhen von Pyramiden, Bäumen, Türmen usw. berechnet, indem man einen Stab lotrecht so aufstellte,
dass das Ende seines Schattens mit dem Ende des Schattens des Objektes zusammenfiel. Dabei wurde die Länge des Schattens
des Objektes und die Länge des Schattens vom Stab gemessen.
Wie du auf dem Bild sehen kannst, hat Panto einen Stab vergessen und sich selbst platziert. Panto weiß, dass die Kletterwand
6 m hoch ist, nur hat er mit zunehmendem Alter vergessen, wie groß er ist.
Hilf ihm, seine Größe herauszufinden:
Zunächst musst du wieder eine passende Formel zur Berechnung der gesuchten Strecke x herleiten! Setze wieder die richtige
Aussage in die passende Lücke ein:
Aufgelöst nach |k|:
Gleichsetzen:
Fantastisch! Du hast hier den zweiten Vierstreckensatz hergeleitet.
Dieser Satz sagt aus, dass sich die Streckenabschnitte auf den Parallelen wie die zugehörigen Streckenlängen (von Z ausgehend
auf einer Geraden verhalten.
Trage hier deine Lösung mit Angabe der Einheit (m) ein!
Umstellen, damit die gesuchte Länge links oben steht:
Berechne das Ergebnis mit dem Taschenrechner:
x = 0,3 m (Tipp: Leerzeichen zwischen Zahl und Einheit nicht vergessen!).
Panto hat natürlich versucht auf die Kletterwand zu klettern. Denkst du, er hat es geschafft? Wenn du es wissen willst,
dann lass es dir anzeigen!