Geraden am Kreis: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 227: Zeile 227:
 
{{Merke|Jeder Punkt P außerhalb eines Kreises hat genau
 
{{Merke|Jeder Punkt P außerhalb eines Kreises hat genau
  
* zwei Tangenten.
 
 
* eine Zentrale.
 
* eine Zentrale.
<ggb_applet height="250" width="270" showResetIcon="true" filename="Fringes_Merke1.ggb" />
+
* zwei Tangenten.
 +
* mehr als zwei Passanten.
 +
* mehr als zwei Sekanten.
 +
[[Bild: Fringes_Merke1.png| 280px]]
 
}}
 
}}
 
</div>
 
</div>

Version vom 11. Dezember 2009, 14:40 Uhr

Mathematik-digital Pfeil-3d.png
Lernpfad

Geraden am Kreis


In diesem Lernpfad lernst du die verschiedenen Geraden am Kreis kennen! Bearbeite den unten aufgeführten Lernpfad!

  • Abstand zwischen Gerade und Kreis
  • Tangente
  • Schnittpunkte zwischen Gerade und Kreis


Los geht´s:

Bereits in der 5. Jahrgangsstufe beziehungsweise schon in der Grundschule hast du sowohl Geraden als auch den Kreis kennengelernt.

Jedoch kommen Geraden und Kreise nicht nur alleine vor, sondern können auch in Beziehung zueinander stehen!

Heute lernst du die Lagebeziehung zwischen Gerade und Kreis kennen!

Wir wollen im Folgenden die verschiedenen Geraden am Kreis einführen.



STATION 1: Abstand zwischen Gerade und Kreis



1. Aufgabe:
Zuerst wollen wir die Begriffe kennenlernen.
Ordne die Begriffe und Abbildungen richtig zu. Ziehe dafür die möglichen Lösungen mit gehaltener linker Maustaste in die Felder. Anschließend kannst du dein Ergebnis überprüfen. Hast du etwas falsch zugeordnet, kannst du anschließend diese Felder neu besetzen.

Fringes Aufgabe1.1.png Fringes Aufgabe1.2.png Fringes Aufgabe1.3.png Fringes Aufgabe1.4.png
Passante Tangente Sekante Zentrale





2. Aufgabe:
Benutze im linken Bild mit gehaltener linker Maustaste den Schieberegler und bearbeite danach die Aufgabe rechts daneben:

Abstand: Gerade Kreis Aufgabe

Benutze den Schieberegler und löse damit das Quiz!
Achtung!! Es können auch mehrere Lösungen richtig sein!
Beim Prüfen der Antworten wird dir "rot" angezeigt was du falsch angekreuzt hast. Mit der Farbe "grün" bekommst du die richtigen Ergebnisse angezeigt, auch wenn du sie nicht angekreuzt hast. Überprüfe im Anschluss deine Ergebnisse!

Quiz:

- Auf welche Zahl musst du den Schieberegler einstellen, damit du eine Tangente erhälst? (5) (!4) (!3) (!2) (1)

- Wieviele Zentralen enthält der Kreis? (!keine) (eine) (!zwei) (!ganz viele)

- Welche Aussage ist bei Sekanten richtig? (!Die Strecke \overline{Mg} ist größer als der Radius r) (!Die Strecke \overline{Mg} ist genauso groß wie der Radius r) (Die Strecke \overline{Mg} ist kleiner als der Radius r)

- Gibt es eine Passante, die einen Schnittpunkt mit dem Kreis k gemeinsam hat? (!ja) (nein)



3. Aufgabe:
Mit dieser Aufgabe sollen nun die Eigenschaften der Geraden am Kreis festgehalten werden. Ziehe dafür die möglichen Lösungen mit gehaltener linker Maustaste in die Felder. Anschließend kannst du dein Ergebnis überprüfen. Hast du etwas falsch zugeordnet, kannst du anschließend diese Felder neu besetzen.

- Ist der Abstand d der Gerade g zum Kreismittelpunkt M größer als der Radius r des Kreises, so nennt man die Gerade "Passante" (Schreibweise: d(M/g) > r).
- Sind Abstand der Geraden g zum Kreismittelpunkt M und Radius r gleich groß, so nennt man die Gerade "Tangente" (Schreibweise: d(M/g) = r).
- Ist der Abstand der Gerade g zum Kreismittelpunkt M kleiner als der Radius r des Kreises, so nennt man die Gerade "Sekante" (Schreibweise: d(M/g) < r). Spezialfall: Geht die Sekante durch den Mittelpunkt M des Kreises, so nennt man sie "Zentrale".















STATION 2: Tangente



Du hast nun die vier verschiedenen Geraden am Kreis kennengelernt!

In diesem Abschnitt wollen wir uns einer bestimmten Geraden widmen, aber siehe selbst!

1. Aufgabe:
Benutze im linken Bild mit gehaltener linker Maustaste den Schieberegler und bearbeite danach die Aufgabe rechts daneben:

Abstand: Gerade Kreis Aufgabe

Benutze den Schieberegler und löse damit das Quiz!
Achtung!! Es können auch mehrere Lösungen richtig sein!
Beim Prüfen der Antworten wird dir "rot" angezeigt was du falsch angekreuzt hast. Mit der Farbe "grün" bekommst du die richtigen Ergebnisse angezeigt, auch wenn du sie nicht angekreuzt hast. Überprüfe im Anschluss deine Ergebnisse!

Quiz:

- Wieviele Tangenten kann man von einen Punkt aus zeichnen, der außerhalb eines Kreises liegt? (zwei) (!eine) (!keine) (!ganz viele)

- Wieviele gemeinsame Schnittpunkte hat eine Tangente mit dem Kreis? (!keinen) (einen) (!zwei) (!ganz viele)

- Wieviele Zentralen kann man von einen Punkt aus zeichnen, der außerhalb eines Kreises liegt? (!zwei) (eine) (!keine) (!ganz viele)

- Wieviele gemeinsame Schnittpunkte hat eine Zentrale mit dem Kreis? (!keinen) (!einen) (zwei) (!ganz viele)



2. Aufgabe: Konstruktion einer Tangente mit dem Geodreieck

  Aufgabe   Stift.gif

Arbeitsauftrag:
Zeichne auf deinem Laufzettel einen Kreis und einen Punkt außerhalb des Kreises. Konstruiere jetzt mit dem Geodreieck eine Tangente!


Schritt 1
Fringes Tangentenkonstruktion.jpg Hier siehst du einen Kreis und einen Punkt P außerhalb des Kreises.


Schritt 2
Fringes Tangentenkonstruktion2.jpg Jetzt musst du das Geodreieck so anlegen, dass dessen Zeichenkante den Punkt P und den Rand des Kreises berührt.


Schritt 3
Fringes Tangentenkonstruktion3.jpg Als nächstes ziehst du eine Linie durch den Punkt P, die den Rand des Kreises in nur einem Punkt berührt.


Schritt 4
Fringes Tangentenkonstruktion4.jpg Jetzt hast du eine Tangente mit Hilfe des Geodreiecks konstruiert.


Hier kannst du dir die Konstruktion noch einmal in einem Video ansehen. Klicke dazu auf das Symbol in der Mitte!
Du kannst das Video mehrmals anschauen! Klicke dazu auf Replay.




3. Aufgabe: Kontruktion einer Tangente mit dem Zirkel
Für die Fleißigen: Probier auf deinem Laufzettel doch auch einmal eine Tangente mit Hilfe des Zirkels zu konstruieren.

Schritt 1
Fringes Tangentenkonstruktion5.jpg Hier siehst du einen Kreis und einen Punkt P außerhalb des Kreises.


Schritt 2
Fringes Tangentenkonstruktion6.jpg Jetzt musst du das Geodreieck so anlegen, dass dessen Zeichenkante den Punkt P und den Kreismittelpunkt M berührt.


Schritt 3
Fringes Tangentenkonstruktion7.jpg Als nächstes ziehst du eine Linie durch den Punkt P und Kreismittelpunkt M und misst mit dem Geodreieck den Mittelpunkt Q auf der Verbindungsstrecke zwischen dem Punkt P und dem Kreismittelpunkt M aus.


Schritt 4
Fringes Tangentenkonstruktion8.jpg Jetzt stichst du mit dem Zirkel in den Punkt Q, stellst als Radius die Entfernung zum Punkt P ein und zeichnest einen Kreis.


Schritt 5
Fringes Tangentenkonstruktion9.jpg Dein neu gezeichneter Kreis hat zwei Schnittpunkte mit dem vorher gegebenen Kreis. Verbinde nun den Punkt P mit einem der zwei Schnittpunkte.


Schritt 6
Fringes Tangentenkonstruktion10.jpg Jetzt hast du eine Tangente mit Hilfe des Zirkels konstruiert.


Hier kannst du dir die Konstruktion noch einmal in einem Video ansehen. Klicke dazu auf das Symbol in der Mitte!
Du kannst das Video mehrmals anschauen! Klicke dazu auf Replay.




Schreibe folgendes Merke (mit Zeichnung!) in dein Heft!

Nuvola apps kig.png   Merke

Jeder Punkt P außerhalb eines Kreises hat genau

  • eine Zentrale.
  • zwei Tangenten.
  • mehr als zwei Passanten.
  • mehr als zwei Sekanten.

Fringes Merke1.png






STATION 3: Schnittpunkte zwischen Gerade und Kreis



Du weißt jetzt, wie man eine Tangente konstruiert und wieviele gemeinsame Schnittpunkte sie mit dem Kreis hat!

Doch was ist mit den anderen Geraden? Das erfährst du hier!


1. Aufgabe:
Es gehören immer drei Kärtchen zueinander:
- Zeichnung
- Name
- Schnittpunkte
Finde sie alle!

Fringes Zentrale.jpg Spezialfall:
Zentrale
Spezialfall:
2 Schnittpunkte;
Gerade durch den Kreismittelpunkt
Fringes Tangente.jpg Tangente 1 Schnittpunkt
Fringes Sekante.jpg Sekante 2 Schnittpunkte
Fringes Passante.jpg Passante kein Schnittpunkt



2. Aufgabe:
Im Alltag kommen auch Tangenten, Sekanten und Zentralen vor.
Lass uns neue Namen erfinden!

Fringes Gitarre.jpg = Sekanten-Gitarre

Fringes Panzerkette.jpg = Tangenten-Panzerkette

Fringes Pendeluhr.jpg = Zentralen-Pendeluhr



































Schreibe folgendes Merke (ohne die Zeichnungen) in dein Heft!

Nuvola apps kig.png   Merke

Eine Gerade kann mit einem Kreis

  • keinen Schnittpunkt gemeinsam haben. Dann nennt man sie Passante.
  • einen Schnittpunkt gemeinsam haben. Dann nennt man sie Tangente.
(Vergleiche: Fringes Panzerkette.jpg Tangenten-Panzerkette)
  • zwei Schnittpunkte gemeinsam haben. Dann nennt man sie Sekante.
(Vergleiche: Fringes Gitarre.jpg Sekanten-Gitarre)
  • zwei Schnittpunkte gemeinsam haben und durch den Kreismittelpunkt gehen. Dann nennt man sie Zentrale.
(Vergleiche: Fringes Pendeluhr.jpg Zentralen-Pendeluhr)




3. Aufgabe: Suchsel-Quiz
Finde alle Geraden am Kreis, indem du diese mit der linken Maustaste markierst. Klicke auf den ersten Buchstaben des Wortes, halte die linke Maustaste gedrückt und bewege den Cursor über das Wort! (Waagrecht, senkrecht und auch schräg, gefundene Wörter werden grün markiert.)

Passante
Sekante
Tangente
Zentrale







Glückwunsch!!
Du hast den ersten Lernpfad erfolgreich abgeschlossen! Im nächsten Lernpfad lernst du, wie sich Geraden zueinander verhalten können, aber siehe selbst!