Übungsaufgaben zum Satz des Thales: Unterschied zwischen den Versionen
Zeile 3: | Zeile 3: | ||
===Übungsaufgaben zum Satz des Thales=== | ===Übungsaufgaben zum Satz des Thales=== | ||
}} | }} | ||
+ | <br> | ||
+ | <div style="border: 2px solid green; background-color:#ffffff; padding:7px;"> | ||
+ | '''Hier siehst du einen schönen Regenbogen mitten in einer Berglandschaft auf dem Planet Phantasia.''' | ||
+ | [[Bild: regenbogen_nico.jpg|thumb|left|Berglandschaft mit Regenbogen|600px]] | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | '''''Welcher Gipfel dieser Berglandschaft ist am spitzesten?''''' | ||
+ | <br> | ||
+ | <br> | ||
+ | Frage a): Hast du eine Idee, wie groß der Winkel am Gipfel von Berg A sein könnte? | ||
+ | <br> | ||
+ | <br> | ||
+ | Antwort a): Der Berg A hat am Gipfel ein Winkelmaß von: <u style="color:lightgrey;background:lightgrey"> 90° </u> | ||
+ | <br> | ||
+ | <br> | ||
+ | Frage b): Haben die Winkel der Berge A,B,C,D, die den Regenbogen berühren eine Gemeinsamkeit? | ||
+ | <br> | ||
+ | <br> | ||
+ | Antwort b): Alle Winkel, die den Regenbogen berühren sind <u style="color:lightgrey;background:lightgrey"> gleich </u> groß. | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | </div> | ||
+ | <br> | ||
+ | <div style="border: 2px solid green; background-color:#ffffff; padding:7px;"> | ||
+ | '''Ein Matrose und sein Kapitän segeln zusammen am Meeresufer entlang und entdecken zwei Leuchttürme unter einem Winkel von 90°.''' | ||
+ | [[Bild: seemann_nico.jpg|thumb|left|Leuchttürme mt Segelschiff|800px]] | ||
+ | <br> | ||
+ | :'''Überlegungen:''' | ||
+ | <br> | ||
+ | *'''Welche Position könnte denn das Segelschiff haben?''' | ||
+ | <br> | ||
+ | *'''Stehen die beiden Leuchttürme zueinander in Beziehung?''' | ||
+ | <br> | ||
+ | *'''Könnte es sich um eine geometrische Figur handeln, wenn man Objekte miteinander verbindet? | ||
+ | <br> | ||
+ | *'''Was bedeutet die Angabe:''' ''"unter einem Winkel von 90°"'' '''Was kannst du daraus schließen?''' | ||
+ | <br> | ||
+ | <br> | ||
+ | <div style="padding:10px;background:#ffffff;border:1px ;"> | ||
+ | '''Auf gehts - löse den Lückentext:''' | ||
+ | <div class="lueckentext-quiz"> | ||
+ | Zwei Standorte auf dem Festland werden mit A und B bezeichnet. In der Zeichnung sind das die <strong> Leuchttürme </strong>. <br> | ||
+ | Das Objekt im Meer, also das <strong> Segelschiff </strong> wird mit dem Buchstaben C versehen. | ||
+ | Nun verbinden wir die Punkte A,B und C miteinander und erhalten ein <strong> rechtwinkliges Dreieck</strong>. <br> | ||
+ | Der Winkel an der <strong> Spitze C </strong> beträgt 90°. <br> | ||
+ | Der Matrose und sein Kapitän segeln mit dem Schiff vom linken zum rechten Leuchtturm genau so, dass der Winkel bei C stets ein Maß von 90° hat. <br> | ||
+ | Dies lässt vermuten, dass die gefahrene Route einen <strong> Halbkreis </strong> ergibt. <br> | ||
+ | Den Mittelpunkt dieses Halbkreises bildet die <strong> Strecke AB </strong>. <br> | ||
+ | </div> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | </div> | ||
+ | </div> | ||
+ | <br> | ||
+ | <br> | ||
+ | <div style="border: 2px solid green; background-color:#ffffff; padding:7px;"> | ||
+ | '''Anhand dieser Zeichnung kannst du den Zusammenhang erkennen, den du im Lückentext erarbeiten solltest.''' | ||
+ | [[Bild: seemann_nico1.jpg|thumb|left|Leuchttürme mit Segelschiff "Thales"|300px]] | ||
+ | <br> | ||
+ | <br> | ||
+ | Frage a): Wenn das Schiff zum Leuchtturm B fährt, unter welchem Winkel blicken der Matrose und der Kapitän aufs Festland? | ||
+ | <br> | ||
+ | <br> | ||
+ | Antwort a): Die beiden Seeleute betrachten es von einem <u style="color:lightgrey;background:lightgrey"> 90° </u> Winkel aus. | ||
+ | <br> | ||
+ | <br> | ||
+ | Frage b): Wenn aber das Schiff zum Leuchtturm A fährt, unter welchem Winkel blicken dann die Schiffsleute aufs Festland ? | ||
+ | <br> | ||
+ | <br> | ||
+ | Antwort b): Dann betrachten es die Seemänner von einem <u style="color:lightgrey;background:lightgrey"> 90° </u> Winkel aus. | ||
+ | <br> | ||
+ | <br> | ||
+ | {| | ||
+ | | <div class="schuettel-quiz"> <br> | ||
+ | Daraus können wir schließen, dass der Winkel bei C immer '''rechtwinklig''' ist, <br> | ||
+ | wenn die Strecke von Leuchtturm A zu Leuchtturm B der '''Durchmesser''' des '''Halbkreises''' über der Strecke AB ist. | ||
+ | <br> | ||
+ | <br> | ||
+ | |</div> | ||
+ | |} | ||
+ | <br> | ||
+ | <br> | ||
+ | </div> | ||
+ | <br> | ||
<br> | <br> | ||
<br> | <br> |
Version vom 17. Juni 2009, 13:15 Uhr
Lernpfad
|
Hier siehst du einen schönen Regenbogen mitten in einer Berglandschaft auf dem Planet Phantasia.
Welcher Gipfel dieser Berglandschaft ist am spitzesten?
Frage a): Hast du eine Idee, wie groß der Winkel am Gipfel von Berg A sein könnte?
Antwort a): Der Berg A hat am Gipfel ein Winkelmaß von: 90°
Frage b): Haben die Winkel der Berge A,B,C,D, die den Regenbogen berühren eine Gemeinsamkeit?
Antwort b): Alle Winkel, die den Regenbogen berühren sind gleich groß.
Ein Matrose und sein Kapitän segeln zusammen am Meeresufer entlang und entdecken zwei Leuchttürme unter einem Winkel von 90°.
- Überlegungen:
- Welche Position könnte denn das Segelschiff haben?
- Stehen die beiden Leuchttürme zueinander in Beziehung?
- Könnte es sich um eine geometrische Figur handeln, wenn man Objekte miteinander verbindet?
- Was bedeutet die Angabe: "unter einem Winkel von 90°" Was kannst du daraus schließen?
Auf gehts - löse den Lückentext:
Zwei Standorte auf dem Festland werden mit A und B bezeichnet. In der Zeichnung sind das die Leuchttürme .
Das Objekt im Meer, also das Segelschiff wird mit dem Buchstaben C versehen.
Nun verbinden wir die Punkte A,B und C miteinander und erhalten ein rechtwinkliges Dreieck.
Der Winkel an der Spitze C beträgt 90°.
Der Matrose und sein Kapitän segeln mit dem Schiff vom linken zum rechten Leuchtturm genau so, dass der Winkel bei C stets ein Maß von 90° hat.
Dies lässt vermuten, dass die gefahrene Route einen Halbkreis ergibt.
Den Mittelpunkt dieses Halbkreises bildet die Strecke AB .
Anhand dieser Zeichnung kannst du den Zusammenhang erkennen, den du im Lückentext erarbeiten solltest.
Frage a): Wenn das Schiff zum Leuchtturm B fährt, unter welchem Winkel blicken der Matrose und der Kapitän aufs Festland?
Antwort a): Die beiden Seeleute betrachten es von einem 90° Winkel aus.
Frage b): Wenn aber das Schiff zum Leuchtturm A fährt, unter welchem Winkel blicken dann die Schiffsleute aufs Festland ?
Antwort b): Dann betrachten es die Seemänner von einem 90° Winkel aus.
Daraus können wir schließen, dass der Winkel bei C immer rechtwinklig ist, |
Kategorie: -leicht-
1. Arbeitsauftrag:
|
Kategorie: -mittelschwierig-
2. Arbeitsauftrag:
|
Kategorie: -schwierig-
3. Arbeitsauftrag:
|
Die folgende Aufgabe ist zum Knüffeln für Profis gedacht!!!
Die rutschende Leiter:
Ziehe an dem grünen Punkt B | Anmerkungen und Arbeitsauftrag | |
---|---|---|
Was fällt dir auf, wenn du am grünen Punkt B ziehst? |
Der Satz des Thales findet Anwendung beim Lösen dieses Problems.
Weitere Informationen erhaltet ihr auch auf dieser Homepage: |
Entstanden unter Mitwirkung von:
|