Ähnlichkeitsabbildung/Zentrische Streckung mit Hilfe von Vektoren/Seite 4: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 10: Zeile 10:
 
'''Ziehe die richtigen Symbole und Wörter in die Lücken.'''
 
'''Ziehe die richtigen Symbole und Wörter in die Lücken.'''
 
<div class="lueckentext-quiz">
 
<div class="lueckentext-quiz">
Durch eine zentrische Streckung mit dem '''Streckungsfaktor k''' wird der '''<span style="color:#EE6363">Urpfeil</span>''' <span style="color:#EE6363"><math>\overrightarrow {PQ}</math></span>  auf den '''<span style="color:#436EEE">Bildpfeil</span>''' <span style="color:#436EEE"><math>\overrightarrow {P'Q'}</math></span>  abgebildet. Die Koordinaten des Bildpfeils erhält man durch folgende Rechnung: '''<span style="color:#436EEE"><math>\overrightarrow {P'Q'}</math></span>''' = k * '''<span style="color:#EE6363"><math>\overrightarrow {PQ}</math></span>'''.
+
Durch eine zentrische Streckung mit dem '''Streckungsfaktor k''' wird der '''<span style="color:#EE6363">Urpfeil</span>''' <span style="color:#EE6363"><math>\overrightarrow {PQ}</math></span>  auf den '''<span style="color:#436EEE">Bildpfeil</span>''' <span style="color:#436EEE"><math>\overrightarrow {P'Q'}</math></span>  abgebildet. Die Koordinaten des Bildpfeils erhält man durch folgende Rechnung:<br/>
 +
'''<span style="color:#436EEE"><math>\overrightarrow {P'Q'}</math></span>''' = k <math>\cdot </math> '''<span style="color:#EE6363"><math>\overrightarrow {PQ}</math></span>'''.
 
</div>
 
</div>
 
|}
 
|}

Version vom 27. Dezember 2009, 10:38 Uhr

Teilaufgabe c)

Du hast bereits gelernt, dass die zentrische Streckung auch mit Hilfe von Vektoren durchgeführt werden kann.
Im Applet sind jetzt die Dreiecksseiten durch Pfeile dargestellt.

1. Bearbeite zuerst den Lückentext rechts vom Applet!

Ziehe die richtigen Symbole und Wörter in die Lücken.

Durch eine zentrische Streckung mit dem Streckungsfaktor k wird der Urpfeil \overrightarrow {PQ} auf den Bildpfeil \overrightarrow {P'Q'} abgebildet. Die Koordinaten des Bildpfeils erhält man durch folgende Rechnung:
\overrightarrow {P'Q'} = k \cdot \overrightarrow {PQ}.

2. Gib die Koordinaten der Urpfeile an!
Weißt du nicht mehr genau, wie man Koordinaten von Pfeilen berechnet, dann lass dir folgenden Tipp anzeigen!

Spitze minus FußMM.png

\overrightarrow {AB} = KlammerMM.gif
4 (x-Koordinate des Vektors)
1 (y-Koordinate des Vektors)
Klammer2MM.gif
\overrightarrow {BC} = KlammerMM.gif
-2 (x-Koordinate des Vektors)
2 (y-Koordinate des Vektors)
Klammer2MM.gif
\overrightarrow {CA} = KlammerMM.gif
-2 (x-Koordinate des Vektors)
-3 (y-Koordinate des Vektors)
Klammer2MM.gif

3. Wie lauten die Koordinaten der Bildpfeile für k = 0,5?

\overrightarrow {A'B'} = KlammerMM.gif
2 (x-Koordinate des Vektors)
0,5 (y-Koordinate des Vektors)
Klammer2MM.gif
\overrightarrow {B'C'} = KlammerMM.gif
-1 (x-Koordinate des Vektors)
1 (y-Koordinate des Vektors)
Klammer2MM.gif
\overrightarrow {C'A'} = KlammerMM.gif
-1 (x-Koordinate des Vektors)
-1,5 (y-Koordinate des Vektors)
Klammer2MM.gif

4. Ein anderes Dreieck wird nun mit dem Streckungsfaktor k = -4 zentrisch gestreckt. Der Bielpfeil zum Pfeil \overrightarrow {AB} hat nach der Streckung die Koordinaten \overrightarrow {A'B'} = \ {12 \choose -8} . Welche Koordinaten hatte der Urpfeil \overrightarrow {AB}?

\overrightarrow {AB} = KlammerMM.gif
-3 (x-Koordinate des Vektors)
2 (y-Koordinate des Vektors)
Klammer2MM.gif

Weiter zur nächsten Teilaufgabe!