Ähnlichkeitsabbildung/Zentrische Streckung mit Hilfe von Vektoren/Seite 3: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 9: Zeile 9:
  
 
Weißt du nicht mehr genau, wie du vorgehen musst, dann lass dir den folgenden Tipp anzeigen!
 
Weißt du nicht mehr genau, wie du vorgehen musst, dann lass dir den folgenden Tipp anzeigen!
 
 
{{Versteckt|
 
{{Versteckt|
 
Der Bildpunkt zu A(2I0) hat die Koordinaten A‘(4I-3). Betrachte die Lage der Verbindungsstrecken [ZA] und [ZA'] und deren Längen.}}
 
Der Bildpunkt zu A(2I0) hat die Koordinaten A‘(4I-3). Betrachte die Lage der Verbindungsstrecken [ZA] und [ZA'] und deren Längen.}}
Zeile 26: Zeile 25:
  
 
Du kannst wieder einen Tipp verwenden, wenn du Hilfe brauchst!
 
Du kannst wieder einen Tipp verwenden, wenn du Hilfe brauchst!
 
 
{{Versteckt|
 
{{Versteckt|
 
Überlege dir, auf welcher Seite von Z die Bildpunkte liegen und wie lange die Verbindungsstrecken [ZP'] sein müssen.}}
 
Überlege dir, auf welcher Seite von Z die Bildpunkte liegen und wie lange die Verbindungsstrecken [ZP'] sein müssen.}}

Version vom 9. Januar 2010, 10:11 Uhr

Teilaufgabe b)

Du hast jetzt die Grundlagen zur zentrischen Streckung noch einmal wiederholt.

In dieser Teilaufgabe darfst du mit diesem Wissen das Dreieck ABC selbst zentrisch strecken. Bewege dazu die Punkte A', B' und C' im Applet!

1. Strecke das Dreieck ABC an Z mit k = 2! Trage zur Kontrolle die Koordinaten der Bildpunkte ein.

Weißt du nicht mehr genau, wie du vorgehen musst, dann lass dir den folgenden Tipp anzeigen!

Der Bildpunkt zu A(2I0) hat die Koordinaten A‘(4I-3). Betrachte die Lage der Verbindungsstrecken [ZA] und [ZA'] und deren Längen.

A' (4 (x-Koordinate) | -3 (y-Koordinate)),
B' (12 (x-Koordinate) | -1 (y-Koordinate)),
C' (8 (x-Koordinate) | 3 (y-Koordinate)),


2. Strecke das Dreieck ABC jetzt mit k = -0.5! Trage zur Kontrolle wieder die Koordinaten der Bildpunkte ein.

Du kannst wieder einen Tipp verwenden, wenn du Hilfe brauchst!

Überlege dir, auf welcher Seite von Z die Bildpunkte liegen und wie lange die Verbindungsstrecken [ZP'] sein müssen.

A' (-1 (x-Koordinate) | 4,5 (y-Koordinate)),
B' (-3 (x-Koordinate) | 4 (y-Koordinate)),
C' (-2 (x-Koordinate) | 3 (y-Koordinate)),

Auf geht's zur nächsten Teilaufgabe