Zinseszins: Unterschied zwischen den Versionen
(Verbesserungen) |
(Verbesserungen) |
||
Zeile 20: | Zeile 20: | ||
{{Arbeit|ARBEIT=Verändere die Zinssätze p bei beiden Verzinsungsformen und beobachte die jeweilige Veränderung des Kapitals in den folgenden n Jahren. Welche Form der Anlage ist für den Kunden einer Bank vernünftiger? | {{Arbeit|ARBEIT=Verändere die Zinssätze p bei beiden Verzinsungsformen und beobachte die jeweilige Veränderung des Kapitals in den folgenden n Jahren. Welche Form der Anlage ist für den Kunden einer Bank vernünftiger? | ||
− | Notiere deine Ergebnisse auf | + | Notiere deine Ergebnisse auf deinem Blatt.}} |
Version vom 21. Januar 2010, 21:38 Uhr
Einfache Verzinsung und Zinseszins
Einfache Verzinsung | Zinseszins |
---|---|
Bei einer einfachen Verzinsung werden in jedem Jahr nur die einfachen Zinsen in der Höhe von K0·p/100 zum Anfangskapital K0 hinzugerechnet. Die Zinsen der weiteren Jahre werden immer nur vom Anfangskapital K0 berechnet. |
Bei einer Verzinsung mit Zinseszinsrechnung werden jedes Jahr die Zinsen des vorangegangenen Jahren wiederum verzinst, d. h. das Kapital K0 wird in jedem Jahr mit (1+ p/100) multipliziert. |
Verändere die Zinssätze p bei beiden Verzinsungsformen und beobachte die jeweilige Veränderung des Kapitals in den folgenden n Jahren. Welche Form der Anlage ist für den Kunden einer Bank vernünftiger? Notiere deine Ergebnisse auf deinem Blatt. |
Es sind einzelne Punkte eingezeichnet, da Zinsen normalerweise jährlich ausgezahlt werden. Falls dich ein Wert dazwischen wie beispielsweise 1,5 interessiert, kannst du über das Kontrollkästchen die kontinuierliche Entwicklung ein- bzw. ausschalten.
a, Beschreibe das Anwachsen des Kapitals in beiden Fällen mit eigenen Worten. b, Berechne den Kapitalstand nach 20 Jahren bei einer Verzinsung von p = 4,5 % für (1) einfache Verzinsung und (2) mit Zinseszins. |
Das Anwachsen eines Kapitals nach der Formel K(x) = K0·(1+p/100)x beschreibt die Funktionsgleichung für einen neuen Funktionstyp. Bei dieser Art von Funktion steht die unabhängige Variable x im Exponenten und wird deshalb Exponentialfunktion genannt.
Merke:
Die Funktion f: R → R, f(x) = ax (a ∈ R+) heißt Exponentialfunktion zur Basis a. |