Quadratische Funktionen: Unterschied zwischen den Versionen
(→Aufgabe 2) |
(→Quadratische Funktionen) |
||
| Zeile 21: | Zeile 21: | ||
|valign="top"| | |valign="top"| | ||
| − | <ggb_applet width="400" height="350" version="3.2" ggbBase64=" | + | <ggb_applet width="400" height="350" version="3.2" ggbBase64="UEsDBBQACAAIALuUUTwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1srVZNj9s2ED03v4LgKSmwNiVZjg1YG7Q5LbBtCrjNIYcAlERJ7EqkIFK78v76zJCSbG93t07TkyRyOB/vvRlq92FoanIvOiO1SmiwYJQIlelcqjKhvS2uNvTD9ZtdKXQp0o6TQncNtwmNFiHF9V5ev/lpZyr9QHjtTD5L8ZDQgtdGUGLaTvDcVELYs3XeD7KWvDt8Sv8WmTXHDe/kRrU9RLFdD2tZk99KM30uMWChlSXEyEcBSa9xbbd0uexEn9Uyl1xhPJcbGBHyIHNbJXSzWVFSCVlW4C5mkfeWad3l+4OxoiHDF9HphIYsWqziMFxF23gTv48YnDv4rSiIESaT8Vqgk8VmHbE1226261UUrsHuuMV8AHG/F9YCpobwQZipsLKT+en7jflV1/mMRaulsh95a/vO0RGNS3t7QPeQQ4eF/KLKWoxrIaBViewu1cPegxN5138eWnfEpZOWH3WtO9LBgTgGg/GZ+qezwTxnK+ZsmLMYfaDTeT/Yhs7CPVP/dFa1VD61se5gKjpgUxhpCC4goqCiCY6ap6JOKCW9kvZ2+rAyuxsrDbz9732TgnpPtTG7DP4nl7vlE1Ht7kSnRO2lo4DXXveG3PN6os7lkYtMNvDpN0ZAOJL1FyTgV3NRdmLK20vfw+V22ak8nyzvllMSmIOBXDMLPQz1WKwFW8xWGri5MVhqTT5DB9eU5NziNnZKLRoBbWSdNFTfiE5mM0ycYmiI149Rg0nMrtm169tZquOhIwmwf9QYNs+JfqDJ24rD2yIYVcIPojsr2fn7TedT7DEykACGjYRRdeWasOED9Bm+8dTourdinwGg6lZn3LqR5rkf2z9g2JIEzoQrfDnAyzbCt0IO4th5AJx8BGb5WU1HMdsKVKOEMa7j7GlvcQWkOyZgnLRYJENdtQLdu/k6mZMW6naNPYsGlOZJQXoGmJ0G57JHlyS0hOE8gM/y7fCOJGT4+jZcsHfu4DmZRa+cGmZiSnpxAWf0nnXO8+yyF7hlr3L7qSiMsMjE1tEQh88SH74E6uWYXlT2a8CDrxH3wuPOyc8z9uQC8Iv/CP6P9dal+OMNAQS8377Wed8JYaabhqucKN7A9h94aTkMJF7rhDMUpC+lt9PK3jsZj/4DVXfzzWDs6Y9K1V143w3WVThOjfhZtF6cASdy/RexumFvMBYbJ5R7Pp4MYP8TgL81Lmj0FP3l6YXg/ozGv7frb1BLBwjun+aAkQMAAO8JAABQSwECFAAUAAgACAC7lFE87p/mgJEDAADvCQAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAMsDAAAAAA==" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" /> |
Version vom 17. Februar 2010, 18:40 Uhr
1. Fußball-WM 2006 - Wasserverbrauch
Inhaltsverzeichnis |
Quadratische Funktionen
| Auf der rechten Seite ist eine andere quadratische Funktion abgebildet. Ihr Funktionsterm hat die Form x². Wie wir schon festgestellt haben, unterscheiden sich die Graphen quadratischer Funktionen stark von den Graphen linearer Funktionen.
|
|
|
Im rechten Bild siehst du wieder die Parabel von oben. Man kann für sie auch die Gleichung Aufgabe 1Verändere a mithilfe des Schiebreglers in der nebenstehenden Graphik und beobachte die Veränderung. Als Orientierung dient dir der Graph x². Ist a>0, dann ist die Parabel enger (gestreckt) als die Normalparabel. Für 0< a < 1 ist die Parabel weiter (gestaucht) als die Normalparabel. Ist a negativ, so ist die Parabel nach unten geöffnet . Hast du die Aufgabe gelöst? Präge dir die jeweilige Auswirkung von a gut ein!
|
|
Mit deinen neugewonnenen Erkenntnissen kannst du die nächste Aufgabe lösen.
Aufgabe 2
Ordne den blaugefärbten Parabeln die jeweils richtige Gleichung zu. Die Normalparabel (schwarz) dient dir als Orientierung.
.
Aufgabe 3
Kreuze die zutreffenden Aussagen zu obigen quadratischen Funktionen an. Es sind jeweils mehrere Antworten richtig.
f(x) = 3,5x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|14] liegt auf dem Graphen.) (Der Punkt [14|2] liegt nicht auf dem Graphen.)
f(x) = -x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|-2] liegt auf dem Graphen.) (!Der Punkt [2|2] liegt auf dem Graphen.)
f(x) = 2x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [0|-2] liegt auf dem Graphen.) (Der Punkt [1|2] liegt oberhalb des Graphen.)
f(x) = -0,1x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [-1|2] liegt auf dem Graphen.) (Der Punkt [-1|1] liegt oberhalb des Graphen.)
.
Bevor wir zum nächsten Kapitel gehen, hast du hier noch einmal die Möglichkeit alles wichtige zusammengefasst zu wiederholen:
|
Merke:
Die Graphen von Funktionen mit der Funktionsgleichung Sie sind symmetrisch zur y-Achse. Der Punkt Ist a=1 heißt der dazugehörige Graph Normalparabel. |
heißen Parabeln.
heißt Scheitel der Parabel und ist der tiefste Punkt.
aufstellen, wobei
ist. In diesem Fall heißt die Funktion Normalparabel. Doch was passiert, wenn man die Zahl a verändert?
3,5 x2
nächstes Kapitel
Zurück zur WM 2006
