Grundlagen der Zerlegungsgleichheit von Figuren: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
K (2.3 Das Prinzip der Zerlegungsgleichheit)
(2.3 Das Prinzip der Zerlegungsgleichheit: Lückentext eingefügt)
Zeile 153: Zeile 153:
 
----
 
----
  
<br>
+
:Das nebenstehende Sechseck und das Quadrat wurden in jeweils '''fünf Teilfiguren''' zerlegt.
:Die nebenstehenden Figuren (Bild wird noch eingefügt) wurden in jeweils vier Teilfiguren zerlegt.
+
 
:Diese Teilfiguren sind '''paarweise zueinander kongruent''', d.h. es gibt immer ein Paar zueinander kongruenter Figuren. <br>
 
:Diese Teilfiguren sind '''paarweise zueinander kongruent''', d.h. es gibt immer ein Paar zueinander kongruenter Figuren. <br>
:Aus den '''Eigenschaften der Kongruenz''' ergibt sich daher, dass diese den '''gleichen Flächeninhalt''' besitzen.
+
:Aus den '''Eigenschaften der Kongruenz''' ergibt sich daher, dass diese Teilfiguren den '''gleichen Flächeninhalt''' besitzen.
 
<br>
 
<br>
:
+
:Der Flächeninhalt des Quadrates setzt sich in diesem Beispiel aus den Flächeninhalten der Teilfiguren zusammen.
 +
'''Ergänze die fehlenden Felder'''
 +
<div class="lueckentext-quiz">
 +
F<sub>Quadrat</sub> = '''F<sub>1</sub>''' + '''F<sub>2</sub>''' + '''F<sub>3</sub>''' + '''F<sub>4</sub>''' + '''F<sub>5</sub>'''
 +
ebenso gilt aber auch:<br>
 +
F<sub>1</sub> + F<sub>2</sub> + F<sub>3</sub> + F<sub>4</sub> + F<sub>5</sub> = '''F<sub>Sechseck</sub>'''
 +
 
 +
:Somit  haben Sechseck und Quadrat in dem Beispiel den '''gleichen Flächeninhalt'''!
 +
</div>
 
<br>
 
<br>
 +
----
 +
  
 
<div style="border: 2px solid red; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid red; background-color:#ffffff; padding:7px;">

Version vom 28. Juni 2009, 21:07 Uhr

Auf dieser Seite lernst Du die Eigenschaften der Zerlegungsgleichheit von Figuren kennen.

Bearbeite die Aufgaben sorgfältig!
Nicht mogeln...schaue erst die Lösungen an, wenn du die Aufgaben selbstsändig bearbeitet hast! Denn nur so lernst du am Besten!

1. Grundlagen der Zerlegungsgleichheit von Figuren

1.1 Wiederholung des Kongruenzbegriffes



Weißt Du noch was man unter Kongruenz von Figuren versteht??
Eine Wiederholung kann nicht schaden.

1.2 Los geht´s: Teste Dein Wissen!



Ein anderes Wort für Kongruenz ist Deckungsgleichheit


Hinweis: Kongruente Figuren kann man zur Deckung bringen

Aufgabe: Wie erzeugt man kongruente Figuren?




Aufgabe: Kongruente Dreiecke


Findest Du alle Dreiecke, die zum Dreieck A kongruent sind?
Gib die Buchstaben an und begründe anschließend warum.


Ebert imageKongruenteDreiecke.jpg

1. Kongruente Dreiecke zu A sind?

B und D
C und E
G und H
J und K
I und F

2. Welche Dreiecke sind ähnlich zu A??

B und F
C
D
E und G
H
I
J
K

Punkte: 0 / 0



War Deine Lösung richtig?

Kleines Quiz

Achtung!! Mehrere Antworten sind möglich!

1. Markiere die richtigen Antworten

alle zueinander ähnlichen Figuren sind zueinander kongurent
alle zueinander kongruenten Figuren sind zueinander ähnlich
alle kongruenten Figuren haben die gleiche Farbe
alle kongruenten Figuren haben den gleichen Flächeninhalt

Punkte: 0 / 0



1.3 Das sollest du also wissen


Zwei Figuren sind zueinander kongruent, wenn sie durch Verschiebung,Drehung oder Spiegelung
ineinander überführt werden können.
Diese drei Abbildungen nennt man daher auch Kongruenz-abbildungen.




1.4 Wofür können wir die Kongruenz von Figuren gebrauchen?



Du kennst sicher ein paar Anwendungsbeispiele wofür man die Eigenschaften der
Kongruenz von Figuren nutzen kann.



Im nächsten Abschnitt lernst Du ein weiteres Anwendungsbeispiel kennen

2. Zerlegungsgleichheit von Figuren

2.1 Eine Einführung


Ebert KapitänCheck1.jpg


Kennst Du den Namen des Legespiels?






Aufgabe: Teilfiguren finden


Hier siehts Du drei Figuren: Eine Schiffskatze, ein Papagei und ein Matrose.


Sie alle lassen sich in Teilfiguren zerlegen.

Aufgabenstellung:
Finde die Teilfiguren, indem Du die Linien einzeichnest.




Prima!!! Du hast nun alle Teilfiguren entdeckt.
Was fällt Dir beim Vergleich der Figuren auf?
Tipp: Achte auf Anzahl und Eigenschaften der Teilfiguren (wird noch formatiert)

Lösung: Die Figuren bestehen aus der gleichen Anzahl an Teilfiguren, welche jeweils paarweise kongruent zueinander sind.

Kapitän Check Aufgabe: Welche ist die größte Insel?


Ebert KapitänCheckInsel.jpg

Aufgabenstellung Ziehe mit der linken Maustaste die unten stehenden Figuren auf die Insel- Umrisse, so dass diese bedeckt werden.




Was fällt Dir auf? Welche ist dir größte Insel?? Begründe Deine Antwort!

1. Markiere die richtige Antwort:

Figur A: Isola Grande
Figur B: Isola Bella
Figur C: Isola Piccola

Punkte: 0 / 0


Begründung:

Die Figuren A und C sind gleich groß, da sie mit sechs Teilfiguren ausgelegt werden können, die jeweils kongruent zueinander sind.
Figur B kann mit einer Teilfigur mehr ausgelegt werden, deshalb ist sie die größte der drei Inseln.


Figur A und C nennt man daher auch zerlegungsgleich,

2.3 Das Prinzip der Zerlegungsgleichheit


Das nebenstehende Sechseck und das Quadrat wurden in jeweils fünf Teilfiguren zerlegt.
Diese Teilfiguren sind paarweise zueinander kongruent, d.h. es gibt immer ein Paar zueinander kongruenter Figuren.
Aus den Eigenschaften der Kongruenz ergibt sich daher, dass diese Teilfiguren den gleichen Flächeninhalt besitzen.


Der Flächeninhalt des Quadrates setzt sich in diesem Beispiel aus den Flächeninhalten der Teilfiguren zusammen.

Ergänze die fehlenden Felder

FQuadrat = F1 + F2 + F3 + F4 + F5 ebenso gilt aber auch:
F1 + F2 + F3 + F4 + F5 = FSechseck

Somit haben Sechseck und Quadrat in dem Beispiel den gleichen Flächeninhalt!




Merke: Der Flächeninhalt der Gesamtfigur ergibt
sich aus der Addition der Flächeninhalte der Teilfiguren


Das ist ja klasse!!
Wir können feststellen, dass zwei Figuren den gleichen Flächeninhalt besitzen,
obwohl wir den Flächeninhalt der einzelnen Teilflächen selbst noch gar nicht berechnen können!


Hierzu ein kleines Beispiel:

Kannst Du zeigen, dass die beiden folgenden Figuren den gleichen Flächeninhalt haben?


Ebert Halbkreisbilder.jpg


Hier findest du den Hinweis

Übertrage folgende Definition in Dein Heft:
MerkeZerlegungsgleichheit von Figuren
Zwei Figuren sind zerlegungsgleich, wenn sie in paarweise kongruente Teilfiguren zerlegt werden können.
Beispiel:


Ebert Merkbilder Zerlegungsgleichheit.jpg
Figur A und Figur B sind zerlegungsgleich. Zerlegungsgleiche Figuren besitzen den gleichen Flächeninhalt


Man kann die Berechnung des Flächeninhaltes von Figuren, für die man keine Berechnungsformel kennt, auf Figuren zurückführen, für die man eine Flächeninhaltsformel kennt.