Vierstreckensatz: Unterschied zwischen den Versionen
Aus DMUW-Wiki
K |
K |
||
Zeile 49: | Zeile 49: | ||
<math>\overline{ZA'}</math> = '''|k| ∙ <math>\overline{ZA}</math>''' <math>\wedge</math> <math>\overline{ZB'}</math> = '''|k| ∙ <math>\overline{ZB}</math>'''<br> | <math>\overline{ZA'}</math> = '''|k| ∙ <math>\overline{ZA}</math>''' <math>\wedge</math> <math>\overline{ZB'}</math> = '''|k| ∙ <math>\overline{ZB}</math>'''<br> | ||
Aufgelöst nach |k|:<br> | Aufgelöst nach |k|:<br> | ||
− | |k| = '''<math>{\overline{ZA'}\over\overline{ZA}}</math>''' <math>\wedge</math> |k| | + | |k| = '''<math>{\overline{ZA'}\over\overline{ZA}}</math>''' <math>\wedge</math> '''|k|''' = <math>{\overline{ZB'}\over\overline{ZB}}</math><br> |
Gleichsetzen: | Gleichsetzen: | ||
<math>{\overline{ZA'}\over\overline{ZA}}</math> = <math>{\overline{ZB'}\over\overline{ZB}}</math><br> | <math>{\overline{ZA'}\over\overline{ZA}}</math> = <math>{\overline{ZB'}\over\overline{ZB}}</math><br> |
Version vom 6. Juli 2009, 11:54 Uhr
Lernpfad
|
1. Station: Erster Vierstreckensatz
- Zoll ist eine Längeneinheit die im Alltag häufig zu finden ist, z.B. bei Laptops, Computern und Fernsehern.
- Um sich die Größe besser vorstellen zu können, soll die Einheit Zoll in Zentimeter umgerechnet werden.
- Hierfür gibt es zwei Möglichkeiten:
- die algebraische Berechnung
- oder die geometrische.
- Als Bepsiel nehmen wir die Umrechnung von einem 15 Zoll Laptop.
- Finde heraus wie du die Aufgabe algebraisch lösen kannst:
- Gegeben: Der Laptop hat einen 15 Zoll Bildschirm. 1 Zoll entspricht 2,54 cm.
- Gesucht: Umrechnung von 15 Zoll in cm.
- Lösung: Berechne in deinem Heft und trage hier deine berechnete Lösung mit Angabe der Einheit (cm) ein!
15 Zoll entsprechen 38,1 cm (Tipp: Berechne mit Hilfe des Dreisatzes).
- Im Folgenden wird dir gezeigt, wie du die Aufgabe geometrisch lösen kannst.
Klicke die Schritte nacheinander an:
1. Schritt: Zeichne zwei Halbgeraden mit gemeinsamen Anfangspunkt Z und trage auf diesen Halbgeraden
- die Längen 1 cm und 15 cm ab. Benenne die Endpunkte der Strecken mit A und B.
2. Schritt: Verbinde Punkt A mit Punkt B.
3. Schritt: Trage in Z die Strecke [ZA'] mit ZA' = 2,54 cm ab.
4. Schritt: Zeichne eine Parallele durch A' zu [AB].
5. Schritt: Benenne Schnittpunkt mit B'.
6. Schritt: Miss ZB' ab.
- Die Rechnung die dahinter steckt:
- Vorrausgesetzt wird dass die Gerade A'B' zu AB parallel ist. Das Dreieck A'ZB' kann somit als das Bild des Dreiecks AZB
- mit dem Streckungszentrum Z aufgefasst werden. Der Punkt A wurde also auf den Punkt A' und Punkt B wurde auf Punkt B' abgebildet.
- Aus dem vorherigen Lernpfad wissen wir, dass das Längenverhältnis von Strecken bei einer zentrischen Streckung, wegen der
Eigenschaft der Längenverhältnistreue, gleich ist. - Was bedeutet dies? Eine kleine Wiederholung kann nicht schaden. Setze dafür die richtige Aussage in die passende Lücken ein:
= |k| ∙ = |k| ∙
Aufgelöst nach |k|:
|k| = |k| =
Gleichsetzen:
=
Einsetzen der Werte ergibt:
= x = 38,1 cm
- Die Formel sagt aus, dass sich die Abschnitte auf der einen Halbgeraden genauso verhalten, wie die Abschnitte auf der anderen
- Halbgeraden. Diesen Satz nennt man den ersten Vierstreckensatz.