3.Station: Unterschied zwischen den Versionen
Aus DMUW-Wiki
(3. Station eingefügt) |
(Link eingefügt) |
||
Zeile 1: | Zeile 1: | ||
+ | <div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;"> | ||
+ | [[Benutzer:Leonie Porzelt/Vierstreckensatz|1. Station: Erster Vierstreckensatz - Schenkellösung]] - [[Benutzer:Leonie Porzelt/Vierstreckensatz/2.Station|2. Station: Erster Vierstreckensatz - Abschnittlösung]] - [[Benutzer:Leonie Porzelt/Vierstreckensatz/3.Station|3. Station: Zweiter Vierstreckensatz]] - [[Benutzer:Leonie Porzelt/Vierstreckensatz/4.Station|4. Station: Zusammenfassung]] - [[Benutzer:Leonie Porzelt/Vierstreckensatz/5.Station|5. Station: Übung]] | ||
+ | </div> | ||
+ | <br> | ||
+ | |||
==3. Station: Zweiter Vierstreckensatz== | ==3. Station: Zweiter Vierstreckensatz== | ||
[[Bild:Porzelt_4-Streckensatz-Kletterwand.jpg]] | [[Bild:Porzelt_4-Streckensatz-Kletterwand.jpg]] | ||
Zeile 20: | Zeile 25: | ||
[[Bild:Porzelt_4-Streckensatz-Kletterwand-Lösung.jpg]]|}} | [[Bild:Porzelt_4-Streckensatz-Kletterwand-Lösung.jpg]]|}} | ||
<br> | <br> | ||
+ | <div align="right">[[Benutzer:Leonie Porzelt/Vierstreckensatz/4.Station|Weiter zur 4. Station: Zusammenfassung]]</div> | ||
+ | <div align="left">[[Benutzer:Leonie Porzelt/Vierstreckensatz/2.Station|Zurück zur 2. Station: Erster Vierstreckensatz - Abschnittlösung]]</div> |
Version vom 6. Juli 2009, 17:28 Uhr
1. Station: Erster Vierstreckensatz - Schenkellösung - 2. Station: Erster Vierstreckensatz - Abschnittlösung - 3. Station: Zweiter Vierstreckensatz - 4. Station: Zusammenfassung - 5. Station: Übung
3. Station: Zweiter Vierstreckensatz
- Auf dem Bild siehst du Panto neben einer 6 m hohen Kletterwand. Auch hier musst du wieder eine passende Formel zur
- Berechnung der gesuchten Strecke x herleiten. Setze wieder die richtige Aussage in die passende Lücke ein:
= |k| ∙ = |k| ∙
Aufgelöst nach |k|:
|k| = |k| =
Gleichsetzen:
=
- Fantastisch! Du hast hier den zweiten Vierstreckensatz hergeleitet. Er sagt aus, dass sich die Streckenabschnitte auf den
- Parallelen, wie die zugehörigen Streckenlängen (von Z ausgehend) auf einer Geraden verhalten.
- Berechne jetzt die Aufgabe in deinem Heft und trage hier deine Lösung mit Angabe der Einheit (cm) ein!
x= 0,30 cm (Tipp: Leerzeichen zwischen Zahl und Einheit nicht vergessen!).
- Wenn du wissen willst, ob es Panto auf die Kletterwand geschafft hat, dann lass es dir anzeigen.