2.Station Fortsetzung: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
K
K
Zeile 100: Zeile 100:
 
</div>
 
</div>
 
<br>
 
<br>
<div align="right">[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/3.Station|Weiter zur 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors]]</div>
+
<div align="left">[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/3.Station|<math>\Rightarrow</math> Weiter zur 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors]]</div>
<div align="left">[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/2.Station|Zurück zur 2. Station: Streckungsfaktor]]</div>
+
<br>
 +
<div align="left">[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/2.Station|<math>\Leftarrow</math> Zurück zur 2. Station: Streckungsfaktor]]</div>

Version vom 12. Juli 2009, 10:42 Uhr

1. Station: Ähnlichkeitsabbildung - Exkurs: Weitere Beispiele einer zentrischen Streckung - 2. Station: Streckungsfaktor - Fortsetzung der 2. Station: Streckungsfaktor - 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors - 4. Station: Zusammenfassung - 5. Station: Übungen - 6. Station: Wissenswertes


Fortsetzung der 2. Station: Streckungsfaktor


Bei dieser zentrischen Streckung musst du dir anschauen, wie sich die Streckenlängen verändern, wenn du k veränderst. Lass dir dafür die Streckenlängen anzeigen!
Was verändert sich? Orientiere dich dabei an nebenstehenden Fragen:

 

1. Wie lang ist ZB', wenn k = 2 ist?

ZB' ist 8 LE lang.
ZB' ist 6 LE lang.
ZB' ist 4 LE lang.

2. Wie lang ist ZB, wenn k = -1 ist?

ZB ist 4 LE lang.
ZB ist 6 LE lang.
ZB ist 8 LE lang.

3. Wie lang ist ZB', wenn k = 3 ist?

ZB' ist 12 LE lang.
ZB' ist 6 LE lang.
ZB' ist 8 LE lang.

4. Für welches k ist ZB' = 6 LE lang?

Für k = 1,5.
Für k = -1,5.
Für k = 2.
Für k = -2,5.

Punkte: 0 / 0


Die Werte, die sich aus der Änderung von k ergeben, wurden in zwei Tabellen zusammengefasst.
In der linken sind die Werte für k von 2 bis 0, in der rechten für k von -2 bis 0.


Arbeitsauftrag :
Betrachte die Tabellen und überlege dir, wie sich die Länge von ZB' im Vergleich zur Länge von ZB in Abhängigkeit von |k| ändert!
 
k ZB ZB'
2 4 8
1.5 4 6
1 4 4
0.5 4 2
0 4 0
k ZB ZB'
-2 4 8
-1.5 4 6
-1 4 4
-0.5 4 2
0 4 0


Wenn du auf "Anzeigen" klickst, siehst du was sich Dia überlegt hat:
Porzelt Dia.jpg



\overline{ZB'} ist \mid k \mid-mal so lang wie \overline{ZB}.



Hier siehst du was das k bedeutet. Merke es dir, denn später wirst du darüber abgefragt!
Porzelt Panto-2.jpg


k bezeichnet man als den Streckungsfaktor. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.



\Rightarrow Weiter zur 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors


\Leftarrow Zurück zur 2. Station: Streckungsfaktor