Higher Dimensions: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 182: Zeile 182:
 
This can be illustrated in table 1.
 
This can be illustrated in table 1.
 
<br/>
 
<br/>
<div align="center"><ggb_applet width="1005" height="631"  version="4.0" ggbBase64="UEsDBBQACAgIAE20xEAAAAAAAAAAAAAAAAAsAAAAMzU4ZGIwNTBhMmZkYjk4ZjAwNTcxNTgyZTUzNDg4YjdcdGFiZWxsZS5wbmekuwVUW1vbLQzBPbgUCS7FixcJ7sWlOKEUtwLFJWjwQosUh7a4e3EJUKG4Q9Hi7g4/7ZG353zv/417xx0jY2dl7bVXlj7PnHM9O0L9iTwOJgUmAgICjqKCjCYCAhIMAQGxAB31Pgc5+OsQAkIggqKMpLbn9PZ3FH3ip3do+znKQGTEDjnZjrLaJkOecceJlzHuxj47u7VNTeOOlVhR6pKN75sWr/pbeoIadpu2iHeNWufXLm6yzuIqBt66Pl/NHJh99AiAAO2GVOqzk0T9+pq6O0Dt4sb+4/N6glAexIv9129kur/vSP/37KMAJB5+fmITE5P94+Nn/6k1KfJNW9tdG1pufb1gdExMzrt3Xb/9J3GhQa3tjQ/oS6vY6MhIFxQJbf94Q0s3j00rD5uEwwDeqj483ej+UEVV1eVoVfU0nGA0kviheq4Mxmlo5NhCR/BQmfHj09CEscuTLXMbm4gmj70qiTcF1OK+sM5QLIud6doE67138nHq7xXwS0xaDAh23F+8kKqEdFe8WFHadWLTdF3tk7w4XGEcmfM6Wu3o73/Cu2NcYYZYpFt6OQ89//GZsKzzhj2RTSeh661G/2yDCxIJCQk6Hp6VFYtkLI1E7IuVL5X02uxa+U9k51v9pvCVkqJIub4wn7q4uGxjMyppahIoJbFHVFsNKOW2sLKysugUET3JEueIOM3Lz//KNZcl6pXwOC3y2Vp/RsHT6rxn000+Z47a5SbGvDvf651ooAogAhg29BMQhkwn/Sv5MwOZ7mfOzzTvH0nk3B/QlHhoA0iwoUms19VD4lyWgeCvAtJ/PPHzQS982EahYoNwKZEtkU7wfpcZ9vQJJXmA3We39x/yPqlZF9psKAyAgBgygHjwM/T7K+192oY5f63hvoKCUTBRKCzE1WKoqogY+Tuq9eNLYKb/Aek7/P1tFl2PGskpXgHrpgU6SrHWPTT6Pxun8Gej/efhoE8rROPudZJeLrEzz3efGvkRKv9sEhmM3AY8id9nrYvfjUKovSFEbmjit0FKv3hkhvZchzC7lDZ7Cb7csEAiDbp1RUPaK4P01misT9RxTH8pfijikRF2w6mBrkoHdH3kQh3bUOMID3exiRqa2e34LAEFa3eGiGT1Vgo7SMSMXaVGexk6LuJAC6K1TN9/8Fw+vPYnm6M/SjmRrM80XCTLQGdVa9NGgcVnnjm7uBjWOJ2Z+/obhH5LNo3KOvd6AIvAb/VsruNAPT6/TqcvjoVwdEsy0yATwtgSWM6Fd7pmKQDH/CjaZB7o+Rnv7keQBw9JozV7lDSfmU/qtRQAc3Q70v+qGUMm1FdTlr7rhJtEdTM6tbvvlRoQ9EkZK9WAUb1+TWq7eS08UMbGMfM9lOyEcuK0pLvPf2ewKmEj3AVf3WZY0ciXmP7zgboxSG55p1RaX6JImGIaPatn049YbsO2az8NJoM39SMUrJ30mgYiDbewX0FwY03GyxN529uHMO1dO+g46mi0j53ILqMNgJmX75sNPKupIM4+dfG1R1tao8JrJRfXRIPYv3rYj0OoDj8/cu2/GnCWXA/1IjVekP1jGRWkgq8HY6W7BttMENGT3DX8RjGQn6XZ48PuDmvi3g8me/KUI0ambUhWlAVtcjRZ7C/QDLV04bHQF0hrscT2VKstdRramMgn8wLnv6fHuHzbyjW4oLAerGKzh+P5uQM0FAkD04p7zVSOKKwPl80OyCgYdD34WK1QXVvOFGqcjrFOUQGFbJ4DMD4oWSx4zS9FwwBpLNVNPnmuyuVBNM3MuOy3XBrmSXfug0nXBqVRvWE0iNB1WUlv56lOTqkDrqGh6/q6NQHMFCHX5a2I9WBOnC+Nv2kXfDr6UT8iOuMfC/8NLvA1/sYZZlkcTcfnCw7Au3fA80Nc6rmm4McecO8fAL0s9GdPv6/XEVb7jIXEq2Nb+p8Th9ND4dF3SLDCShjui97qx3t3MwPN9PgZKXKgvNDljK+SKg+52rV7EUjE9My6HMibpIH79mh5JI9C4sMoQkS0Ks77HsIJYcIUazf03DkT6Nd1zx/EpmcFZ9Lh8mPIMKqyZFLPxUo/OFswgPlG0umCOFVsQuS6a37oHUdpO4XOl0W9LuUbm/G2AfAQdZTHQly6evR9BYCZNK1MvmdmggKnrPsbaSm4ylSL68qgVbmluYzeTEUHDfk29Ejd9Yip5c32We0s8DUA+BX3EqmJWs43+ZQApoQLHxWCI/v4pi6Ln2DKPwuy9Rv8oQpiol/NYJ7NEm3vYi4HprwKBNf3OjfedSjiZS2/lWd5hnXdetJYnYA4hJe8+jhbulKKxTAASJL+GIpSy2+ec2buFeL+qCb9BSUnRuHb21XW2Ltp4phupHdmH0XIvDhRNBTvkOEs71ubYqK++rzLTRVBVvUbzfBDqRcj7qJSROJZxZnLfBtNEUThFrpJ1rhBQh2QwsCI0rR0MSxS8amcI1beMFrfB6cfGcLZjdWPnMuw7GNN1jjBxkItvcli8I4jb54BmPiYXOGoMezhkUGERR5TEm5jSXPMzC0yJJaZHxFP4ESuvIiCRb8Qx9uhIViweDO3hhF6zghK2m1B3ipvTgwYDw2XB4nSoWIURnp9YYQW9IGjZWw/iRkZzpimLxdJGqcvj6f6406IaW91aHsRwiQb2hzYUd/whMoWPtHfXxAnqeEIqqJJfpOmIx2K+HiRKCvojZNofyIRbHNwdDw4J4IHuxa5oNhv0hnHYX2yXq5rBY83K2//xd0AmY7hdYvUacXlCdNc9/trJOD80kZHIdlTHbzUxiWZ0h4jSncsuWepkHEvRQpYxxPnqWv6GnjEq9RB4pE4idCrcMfPsH0ZeE5rhQD/L/N+ILG6GNlj7ZDPSS2ddD9F7HWezhGFL5gpHa1Il5M3RV5QYkp5sDdcYpoQyLa8h55b88vVVIeX6XqNWtcDAlC9O/3cxQAHToEFOVbo7wAo5o6OnLoYRJyrgYxnUtmwtbf4sC/Y8HpPfzeSHl3CtQYRJmDRtx7oGiJMQasUL7UZR8a9wG69c3CUKEyEYvB6ncGdw5qkNCxhxIlOSOQpMZRlRl36R711dHxT+eJo4gOh1gKaxlG+8Gyr8GHVCbAcPG5AISKgGacYTS8o25hMbmV1yUiBPbcNAJdIiut1ysDs0pwnWGUMgxxoBZwz50lpZJ1pokKC8unL+stuFpW88PpEL7CdJNw/kObG4V4jwG3PXXYVZxMWXlPc+zwej+csiuAFmz5HY1yByyXhsmdafKkuJJIR861EIWDtZ0uvUt2w0nzcpOrDcIYqzKm0uUwpx1FKzfS3SO1FjyipNTBebQanf8CQmcp3RSh74hQmx3isXjTE3SdKHTiITgM4eAjuuwykwCkoTMvVX0HUd+4h3p0/R0cEaHhBG7wvnvW5sURKXZKwqHuCViX2w5ykMLUdcpTmUHO3U8aJ4/Xxb3QpO6BYgs7eOwPnhYW11rR2P6ozgh918JwnNWkkksAudYk1PI4lRWMU5CGNsPbkmcoGU1V9dF0WWwnUJunAlDgfnx9U1x/fC7JheA9+NcUacQzrYN79CuYrnQRIaLPF8qJEtecdqqW47+P7PmN+jOIY+gZKtuWPs5anfSsRaI0X/lZefNbwlzdYklDJf0WwhtiLUjpYAcM/DtEsmPVDHG/D1pjiSOIEvotPcCZoI64Hx/cR2jvQrxM5RHIi1S+kXz2WUXAzeo8OP35vHTKXEozoXmpmUkjuzSWMsqZ+UEAHrM6yWaJfcHWlP3Wch8U8mJ8omrLgaf54Ej5wElTxoIUwPDMcH8aGDgcQp+Y8X0lgsTOPWVoJN7u8RdtXUZbn1ebyooJNX5Rq5K3pGvkSxqRog4ZuGF7eDWOPB2EcH521FyXjo1+izrJwAFW307Kvnji99zNip3EjMeytkSHvwB5fubQoDffU953eNxOVECCld4B/rmrlKeLyRGa+g3MBhvr6VOYcpwiRH9amB7XML4oTsCLxfL7CdeSwPg5AqBS45LwmPGM8B2ndO5O+KQZ6gR+Mu/ZZgXMrJ+ZFdpG87v496Tdqi8WdhhzGICY6jhXG/r63sVMSd9FZ3RRD+WIGegI3+0QjFOsVh6KUNx+8mhXxYZ+HJJ1TTalXSt1Bb2xDngfnQVa+JOq3mpHkubNGBMlNA/sCwF2Zjyo3jsUUDrQLWED+B21U15RnL7GlxZQRRZZEFawf4RWXef8cNpkpSj1TU1NRtacdrQcy24dIw9ouEZhQ9BupuoK2HiT/eBpuopdYViQnMigdQG85Du41R7LrVnPhj5EI+Oh+vgiGaCnSgwR40XlYzus5bUajU0kpArtBFInKXSJtCFhNeWTNHca3DVay/iecGz7A4Mx2L+l6PLB9+Odw6uWxcP8neGfg/V3HCjbQqUtrGVn901SuSyYgBpyye7EpuaHWJ9JTSi+47Lk/UfEolpbHfBcWcQDBx83ZYHS4j3Hv1AWH+cliLa/U0Ud9nzGtBL2VD+hwuEKAEYUdsuERV8sMlyuxbC1udaVpkJ5JKzMQio4sstdbUgWIrkWX0UGFhIZlqFfbPiUSIDEzyUO8LPcJBmvACu9hTYoeFNbu01Bf9xgbWbUAI5H72RWSUOiHZeUzUFn6FJbE2EhwkjqZriWTmZUnIJfIM0J2GIzthTqx4xevhpzbaBZH/ZVrUVe9KH3QxV9tQegDbx9ObbaOg+hqpnMYUcTP3SKc+MYTb3bmEQaSw1hOniO6xde6FP8vxOWQnMN4BuCIFpwnSq5CTWhJc+Su0TllFaP+69ECiNpOhBemTR0XGtCocHjNLAtikkXrcEkSo9DjCIN03xblypaYW+YiqU4VJ9ccdnyqoTDAM4nQQvQigpEXKqjC5F7VN9zlvfebDhjRaj5Y7fF1IzwzRqo8FuHqoBG8eUEMq3op13oUVl8u0dxF8IouLZixl46XDzjnD0VHj/KJSx3Vl0FGax+YoZHMGYLdxekdHQ2LwZStcNrX5S6XKCcwUaLiusfbyULyPxDCsmhcNaDop6RnHe3qIT1MUY8VKXgJOhf21rD2Ap1lehijUBXjuWZwD0+hcR7Azu6sD9e9ZQxAVywYeauzh1HQXNXrrOzYSAu8hR9f17kAB7NjwZMHrg8P2j6g8r8mGCT3w3fsiEyrvHdv5ND9gAM01Mgba4bTd8+35it/5DI/w0Pf929Ala4dNc9myp7dpxI65tNMwJu4d3bw9C/FFq95cipJ+GQpKcjq4fa9Zp69bKs8R8hLHgp9ds0XrsKppGRxXUsMVyNf4TeOi+OHTw4tVG9Vda4YJz1H5BPWJBTF3zPRI9mwYiiowOR9r02JqfYxuZLHJFmx/NAtLyHHeYb7ikrxPxJEQhF4djl8ObnkLW6GJu/YyPbEd8aTnV+8GFO7cvoqvOYydTQjsmEIXfeyIV+tmwhvtWRdjxPBmwC74J7aP/TfM0W7lN3Kna6Q9nyIVH7meD3djGl//DVXY35F6JbmICs50PPw0Hw7Yxa3rkrY8bZzkNwFdYCxkeHWB3DQH0Rh/Zx5N9gdLWc+dm0JuhT3/hG9mV4n4FJHzqInJx89wiX0aEjROtsJnf7mMsV5nzz9bnmTBsBTHwgjCmkwhq++BBxuwRRKbh4mZfowHu5jlX/0XMQrjyrmbrJwuSh+hFytSeYxiFRO9ANFEUlju/c828o5XR9fFnMdzM2GXKx5uvREE3HFAatLezCkcZDidaxoWLGMaSObJah1UozsHVVR5LIG9csPJWZ0/pPFnzkj9Sez3xgzau/wE7dR+smC2KSlyix6GwQKUvduCJHH+A+7iuwZtQuMdPyHE/Wk0WpS3TCpP9uwnQERbQAHxCZZ6UHTmygaeb6y2tdCT1a+Zke7+7tQ8q/grV+6tNDvoim7whluUqMGJErPX6UO5NlR77dyU7nDvRJKjUPv54KxSZPFJoc5ALlV3ZFM18g/JtBp1q8NB7bo6W2GGaZHNBBzSQJMLeklLnc+N7mmspiBHfGqGr4payISlAExeTv0hqCumDFav/Od4dG/oclP99rkJx24XnRdwevb05RKX460cLQNHvIxXsF7SQe0VEz0Wd5/VVXwnHY3mHH6XVfz132ck8DeaTkWWybqh41U3L4n/A2yj5e7c1wKWCGGyoPhXZGGdxdUDciQMkR8BVx/jOTEk/n5CsdZIukJo56RFK4WNB7Uz+ZcLna9+m4st7eRBkO7aS6fWMkizz+9EQBaqkVHyUbPeNnffKT+Qvo5eeMWl956q7YHVpvsIsGCqZlhokAOO0saly9+YfoRLd9WTcjejQ6YSIvIXOFtRj/pu5PJuvyiYreKiuu1JuPVNHIiAKLEB7neXdiOxVg34pZQeRSXmCmMzYbXnf4t32XiMSCedZiSFKARCk2hiGpov2po2CN1q+aV7VC5Ki+zwZ/EM4o56c1actCfFTR9dSkAYurc+WGvUvSw7lsFMMQRbb9dTfR0t6T9B+dLYDRbrn3+N08mAM8FIRAr1yB5Y/KChsb3Vf1cMFnMD2fSewOKn9EtXBaWGkiHG2C21wUuGP6Oc0cFq+LPrWzg/kxdGwm7yvYTdDP2I+WJn0OfmSHu/tbtVa7jFD3/klQ8K7CAFlDJgOroFdh7hz+NvCTISEEtiGu2V7WR0vb8Ma6ILJ3YMhLQwnT54K2xPr8fYlKJeNjV0qz4wRFXBQEAeOLMmfp2VVq8A3Ai59QpOeEscyG8uHm5kcLvKjKe4QH1gdmzJQU6l6M1HPe6qWRxjtMk77c/pMT0DCj5AWWJm9yLV8Mz752+2LuSN8E6uJqt9iTJgHliOKW+ga772GG9LM3MtFERLz4JdwFfA0HARBBPWYOH7wNdlbsvnt8MYxivskBC/MYr1HSg7+GjDLQc3cTJSVydw30W/B4oq3v+yHdwovcKnkbaGDAbDA30tnqUh6Q3sRvFscvpr7OeMbdH+ijERPs7ObufaLIP1Nz1P20keUwtAxJQ5DnL9dsiGIEJCrq4529TNiCPqLX2NJFVfofiuazse6uYNlDbxYrJe8qJDNNnLVzrHogK+wkLUL24Hvh6pU0Ki4Dh+sZuPchb9nCJbTrdVm5oUU64Ex1e4ymDuc6/fQT3N/FA9BDrJOLtTRQHzvdeTRvYP6VNE6TqyOmFVqVlxG++BDwk+dZ9PJbvvOGFsJQwR3u+8tQ+XZywOs+p/e0aFP1Jnyqop3Pv81NKQ8bYsyWdyRdclEM0PER7MROx4ZUvL41cyloJJ/yW8UtFyj+ej8NpeTaZBPgqoariHPp8abCnzPOr54g5BGDtxYIeMVjR6+YDangzqY53ZCGbbGJggdJFqxqPju85kZbcJrhvgwUVJkxKjJRr7/UM+/rsDhZWh5L9tIHKm7MZIY6ylU/tNyHuL1GOTXqYAHGAg0zrK8k4xYch6wW29E+L8iaEsL/1t781PKV47IM+4lCPVhPPqx4s/4542IrgP7U66T+kuo80f8lwYAYg+a80XBQDfntzZXH443OJiqWjY+zpzkw115sa79NtDCQkpGiqx0k3OchjH12tUlJTq7i0S2wnynB8fHxOQxN0zna/m1tbww6We6sl3hQwPUlHt7CwcNuZ1iHYyeCzIVBRURn8oEyqWHOWbOovCQWgMIyYjEvopQk4qBeo036uqXeYqauoqXmj4jNTa3fmAN4ezEFCxSZr/6Jd9Vq9KwxnilTJoNSwPmmvqcX7BBLAIslvMywjzgMxLdDVKdHHFxAQ2MZiLCbhMPjE9epkYyT8JkdmrNxUQng2jd+OKeL0SyslNy+v1EieKuNIr6Yd19aWTpu/X8rbt5Ut84UUfNbtjHlGkC+MedjJKbx/JV5EsHb9yvb5pdzQ/jlIf+qWv4YN488fYX8OIcNfN/5d9J+P/VX0n4/9vJ2ICtFE9zWmXj79oNzAUP4VIhZoqI4N0cKAO+3NCTr7LbHszdjV7y5GmAISRnjR72v4u+aflSViwxQ10P0qCV0DSoIhQQiSJqkQnc7AWj3nGQlExQ3kpbYnYZM2hZXoWNiBI6fx61oDmnP1F5E6UtUnTvgJhodMv+r5a1H8au314RAn3cq4vdAoFw4VB05BACC3hC/7gyFVC+lthKH5zypfCA1/nzAP9MMgGh8LSwqj+B/ycRWA5+nxouG1cBVvkb6tNMs8PlWARKB8XFnnwRfAMasZ+iNJPCaHPMipsBrgwJTp9rvdbKoGkaXqjNl5FTnZRBt5Ef6/ZWo2RqAWffymD8JykX670gymDlpZe1J+/Ashpt7GxetPqRX1g8Fmc9Qta8ZwQ8DBvLuTFMP13k7HUHCs56oPSlO+mzT9/5jSD8gQX2CCk5qkmB3hOkbtoGu/4uzN/tPkTKJgWNeNRn4JK3IOtUjsY1j4vWX/gRFL+D8a9RA4Qt+C31r+IDJtjRB/ElM6ybgzSs2K40B67wsDX4m6wnX9pvWjF8yOTH+K5v/YlGz3rL6Y1ChpTApf63sAAkSRb72NoBfpvnkaoYEpRKH7YK6GxsbnrFkeQzBFJmCiExNx3Dl3m/3yyTgX2WJEUdPUMCokbPu5/bl3oxX5o3q9cnxgRtgPPgCP4ECAuanIXSgcJPC0cTnXGdQT3j6wVX0zsUN8/U7z1fvAG71FcDReaNbZ2o67lr6PDjWsKn+gF6VrayeN3e98M+YxwIL3VUKZd1qJOiiPCcRDd7VWE64G6iR4A4QVRihE7t+V7fwSODVsvT6iPQwb7z8enTsbe3Yonu4rDWIz9qVabKiRrjsoGvQS1ZW4RwO8NqztJ/ODRd7x7BZ5ds/C/NGkD5iCwH21ovPQUCS7548zU9XEIqt3kZfyhfpl1kS6q4/jk8oQvXcOQ5ULCABDLgKUm4mfhk1UHcSOZxdR1oCAA5rXlDhG1HGNL0meXg5+qmJAzVIKMuWDno8hi8Or3XGn+h9aGuL2LPkoocPbez0rW+3qTqcFaGCyHkfcwEe5vvg+7/GU9MlukYB2Od9TWhrSujL/sc//8+XKNuSvIMJPxsgRA8ctDNt9FNfJs9mlCGJF7bjyl3EwJEQn2Rmyu0UR734D1uYAyV113myopgu50Cl/f3kqbcYOLXBTRJdOuWqxX3Y/ucXylLm32uRTL0rVSWc/+tN+Tcm4PGKnvmKmFwgF97UcZeGZSHyM3/FsXCYINMOY1y10BoV9XLr9FvX0cv1H4Yjnj9fZrwzxiXDh3IKizteaPsv4GTKg2yPUyKOqV6QNXitGSeLXR7OMQih59LQ6JwJPc8Aq0eDRGbT78UjeE1qMCcqLxESBQBhyxdpG55gx7cr5oClEQUQTluvacKKeIFYlj6yolfrgZ494GLpFO28dV8ztcoMBJ71mX2gFfxynv/1lw3jKw/EKaYFvje5ZDy6NZlcBEdAV5KugGsuAaPM5rrJaS3ZybSLMbASIE/att8x4q9LrhqWmv5yrs5J7M24qRNqRR3hO5HMbGo84gb+Hx+KnW2NI1m1s5Y5tbom9V+JTjckz00j3tDqLiTFSZ6yEVeTg/2k5Abn2KOpsQbfpQR0cX7Kz43Xz+BtsIW9zFKbiUwL6MEw+DgoUIvEItJNbhWFW9HM9M5y/LpzmbJ+2m/u5+3h/96Ef8eBxGCKPcN5NJ0FzchbDeQntWHTnXoSbctYqboKjsdy6Q3nCKmoF+kbLs3QmLCfdRpJ/WpGw3wy/hldgShJZKGwQdH51FVCAUEkHfP0mctZbJ3EUmhKfFARXCEBGObfanBhgY0d1URz2JSf77UzrT3uAKWMZbSv2Xu5E6l+Hc3/Zjr/T/4YMf+T/q+TfNSiAVrGBXEYNgYGBCLp5VdXVXZcnWz89rHwctWxHEMri0lLnrXrQz4NRpWTOb63qlRSPX7I3vtz50qpeNd0WIFFSUrKwu9t/q56b8K0wkvhhmJjPqUJui7i4OItJc4NvAmfo6eXFxWfEVr+rlz9PQYt1S6US2XQYRub47cY/tYETlHwmSg3v3XxfMhdNdHS0/lslaWnpOcFtrBX2e6BRUFj42XSi4/bTzfDERHhjo8iVVLeSvDyagYHBNha1U8ld9bNlugc0dck7ljeun1enqi4EZq5upq9UwbO1dqS7820D97DBSXq1P+Prz/PdCnMkTCKWQOVkzkqJN9kkXCbsbQT3nSql4DZDMKh3vE9WGbR41/pGtNgXil1Je22OlxpW1NX13HeMYWhupt7pnfNip36d/VuGaZ+9OTEiDgMi5ST2xds8On7XVZWLSLHCGo/xkqeHMzbvh+eEXVf3qWXmgj/5AMnvr3+kf7+Gj/6xzP6x4v4x79j/WAm/z/S/wd7fdxX+x2M/bxfhwq0nXIXqIAyUlJSDpVamKuKHqJnmn+/dFwM9PRInmpzFF2c0r7bWcuj6lNUDx7Be2jBw3xjca65nLGZZPOZbiDHeATsI+tfi/tP+HbEAHw1DPzELtbnzPz+xi+h5yQRERky97CngORNPv37hVMXuAGKiF1/i37VPj1yMwWoXaQPtTZxZInBkGKwLvRTs9wkBJYD7Qotp+xu8nOlXcXajX+p8E49R/aDI7HKQyDf15F8LGnPfnC2ISw08v8mv/s7WfbREhyQUQwaFgcQ8M7miKlY4tWYrOlbiVDJL/Ptgq4vOm0fx5jLSJSJkAfs86Ywiba94gdJOA93nJO7qtUbEo46aGN3dfiYx/+6WCHBkJOHgRxzu+sRL7NXdqYgMw94cemhBIJyebQHjFI8i+kYteIFrr4fF0+hpFLn7ibifxdjLDkujIyagqwjXS7yOlDJpbpvu55TiEmhillei/9507qDnMQ8c8WHz/EOcVi4/1g5pAgtiX2KVLzTiQVN8DoIe/euB+y+II8P+LXXJRtGJeYSNLPbMLcIT/P+yJiBzAEjNI0cH6uDxVQCyqjG66qrFvJgE/P0/18sfdXuhw4b2m5sJXEWmOlU+oTnc5K27fsJwXIxI+E73U1QekvFuX94kuYf7Asoc096Ugn7aHtWMOPBjvvYbNXt9gYdfU1TTRYl9MpaABGqgVQMA9cJh68pUbL5Ev2iwMgv0nJV6rcJ9ZZvdj89/iWvyhJtAEpPMOxRpaFm0rvRSzM6HWQVehraIHskIvOOxWUrfHnMpMeDmUKZ5kimOdmWaR8er8ctPRZ9C25br7NcSLx6cLkcmEwB4pkkR6+us7PaaJU4Xq4Kmf57wmypiN+/tdBfRnmi8y6bGVrXL3ViQbqDKRGA19fkl/MaU01Mmv/x03JhyppNz5FniLwNiW3v2EKXh9oGBDleCZZ9bTN/gnhnLnIyChxEDHnztcYWz2Tf7Xq2jQnmX8QzwNVHv23WjfM8k8eFhfnC5cSsmtKYTui70APdE6ZlNeV4dtfcuUGJLCh0eoPKCz9lLdHP66bMNafqvCWS+bBj+Q8hLeoTnwIFx4WePy984CJNF7bHSApFolrsvy6am7WZ8QSTf75ETfC/JDURPLcnJXNloyq/9aCQ0/ikx3241ETMSNITPJkv759mR/NGucCZNeqRcDIVloeSj2/ZKPeTcF5kALWi+IfdF/u7TnhLZtFh9Zw5Mf55hKtLPSAc7XtuGoqIzB3w2X1Vnz5iBd0HHL/vITiySxG3Hc4lXTXzR9lgYkZeOMlKE86ySTgUcxglcB9A6lBG5jHW9QHk9SHF37eu3GdXH5mmcYpU/nkS+1xP7gQ7sml1wgTyvO1JqM01aCIy6n5lt/rnM9MTSFj9mjh5/q5+84clnBTUw5AfV9dBHli/kdlK97dSql+WvltWJ//BmKXpdPsAjdGCbqyce3TtNcB/03j4CNA7v/euL7m4XORbLPFyc2mFrYe9HT7yZ6IQz/kGZfvlYDGhKZhIgP8aYp8DVYbTMmHzFATMnUEhDV2tCppWOWL1yGq9AzFdYl21zd7gZAEeWOP9uFOtIAsDmf2aXemIG0aF4OWZ5k17ozdWdZLcLe7PApEQO67+SM/NVmyLTll15IWvGNLPWzVvBhtXExq/h066iInaQ+m+zQQbUeu1sYas4ysL2rEnxSGvsQYwLmjEGPOC1vodnZlrQNORuA8N0w/AqPsXrB7kUQ0OEJupSy4eToaJZvZ4Pf8pj5L+zSngzCjz6WLtZrA1ot3oXZOp/kXa5jPxEzEcedJvGEE47u0M5HnEjeJJcfrxTtdxwTqeeoPYokRfo51jSO/7BlDxZ56riKrMmcxT8LzvKRjXmjZe7Kcu/K6md8W+H8htt+4+t+Jvh8P6/FkshDRQKuPXdnm/LSvyFGXgseiq43tQ870uBXl8cWRytftvGYyw4WO7tmp5O9cuBjFVayI8W68X55Tzjt/xClJKaCumNpbovU2Tc9LJjdpbyNbNakozP2fYUfdugiM0wg2KNx95cC4t2AZBJJaX9RlXW9nx/saKyMl7FRz6ajLYNnSHxNJaCf3Mm0NrOLopNp6iCN7HENJKUq/8eJbAZN/Lx8fNr5EihnIYTaEcQMGYXF9/Dh8oEVWosIpb2e5CQoFpQU1u78tB4kuaLVtXB4NBQfFwc0bThxxeWXj6WhCZ1yYkPGK945UxNs3ZunjC6/qEh/KEoOP+V+Eta2JNk+A/Z/ou//6EVWP2TPtP9A/j9I07rL7df9eh/1Rq0ze9JmwytCB0yLe3bh6gHrDYKzEDihJr3QnA5/+0Z9RAZOD0PPxU5MmTXf+EDEz2PyIg/DXXwJPyN0cweBrxNTc6bTXOZHkhx6V/S+W45/p4JDs+o/AY5Uh56Na7IHzuZsQUc7F1VEdghj88eBNJAC141ZL0NJqcSPy7/yK+SxtndkX8Lu3eW/OaOehUBKayYT33J0ijoub3OpJvpgYmcEdB+Z4MhbAFZ9hULHb9PL+wbi6fnzQh/6/bqj0KMjUITocctWCI6vNBCKILkuf4m5O07z9BKfc+lp6dhhLA7zvI4i+5PPRX9dzkB/G602ndUTdQXdJH3bApZvLNUAvWdmySirS1NT56bafS0L6kkcu4hwya5405qxBx/UbZmpe/gqPrruETVOC99v0dvfof22oOFRDasZZNDtZxhcWlB5MX1Zl+T+PVFrpjdOGnBetIC5pyRsY9wFzRB0PN5OkPwJcWE1ZlkE4GljPpUtlJiJ3KuJpymrJcUolnLOzhWK9niLfApWS0crC3XO28SKiu21dnq9iDaQBhb9XCDVuJ3IaVg/T2d2A4V9e40bu+ayb7yqxt2/MXd5MryZMbok9EVvY2tmLnA4DLkpQCU3PkMGzKdfLIvSfaxAt8DOp1uHt4zzFfqE9/1BZtJ2IhZcJp028xvyk80RocDwdqdyBKPQwm3SCw+Ny47Y4rBXJ7LVTD8ZZB+dtyVyaX1SYNwKTbmjxEiqDUsj7BuOQQNel7+OgkWvbCmL6gOzwklLzo1hq34nC2vewJ4JggvSAI4dyN1LXHMdWof91D7oU6MxZiZpoC1d2VAushLyL+LLzz5sbfPQhqM4KucgMMtTOCxXc58gmsDjSTo9musjMEbUrrTW5hmKHaO1TDxu4lZuPSEKzKkjJnYJdnKHPxac1CgIEJOzGNJ1w04V2Kn8rex+xtCJck0LawsHhSUcoKVT9tj67AOet2d3q91NpG9x4Hrh3hl9KZ6U3BPEA7aT/Oku6vJ3xPgr4qvqdyFBIqYNvWLcnx7XfS9JHA+0wHF0P/eYH/t1r50BU8jw/D5tLeSpoNhqYO4EjResGSXzx+HKViReObOxB3ZHXAeIrlb12VGlAqK4dO/tLi3hU00jopD+xIiRA5sxCGS30zIqi5IpJah2r/qbetCTMYUNQiOFzP8MrBGU/w8IyzFn5ZAfOgPn37Cap829fhrw6fN/Npkl6/J4Os3zFs8raZb7H7apc85VISpQurjldDhzA+4XcBp7DulBi1MeemYgeEA3aBCUaAWfPniVvN4b5ZBmWbcZpqkupyZXh+lHI2VCJbT7+nnDLl36/n41ZXLH+/d+iiKE67ql/G5WIlv8JcotXoogWQY9Vh23PV2sm8+l6NRBReti59hOl51g8STDRgsQWGtQjHfkWJo0W2BkePglqSMwXfyeEI1joGNdUsDY3wgIpY4GoNo+FLX2SJ7R0QCETSFgDTsqtpeY8gAS6qDt6J0xECc8zuVSK4Dv+uPiYkQM33KD3ZuvZOhaC7KUqc/g4s+KBtgOt8I1hSZMIw8fIO8TvE2Z75DvTni1W6DAjVswMNssT31aY+s7rd86u6nHoADLUqrXNeMpaeXCsoTCC0vLzplEfOp77HofxWQ2J/0cMbJGz+OYvezfvaUIFiNsYPL4BcWxfaFWW1RVmXofamjjO4+ewOEQeMOIH4T9ju1DuLAqF0CGCR3f3PYoG9Dg3gFi6y9QZ3K7dYdr+ycCSTCeGbAaAlCFROOxPkeYv/Y+LQqvKuPvoGErsXhDR3wtYW0i2UQ+TbHnY0R5jvNYpvJ5V+rdykgSzUvguaFXoXVCGZfKv+W1jfjCrJe0x56dii4rxZZorv0dVp1dFTJS1OXjgcYbdO6i+Dj1rBgQ73nG++EXdeW16tZQlgWNj/eg1U/qvC60i/Dc/NrfV1D+fGe+YHGOivQlCTk5pZAh62k5xtdKMp6i6PF2jLM+DBT1WiJIGrKLy9NnjatETle3cNVCwDweh9r57ufpvlDVgYseHQ0X0jzJBRFbNvMCYIwQncyZLNNYuTPnGk94uqRf49E6MX2loe/UB865fPqkU4Jwix5/YInfZFJDh7AKZVtIdgmu9RBERKWVMmOxvdzPdbWKsmu0/K4h1MIXd4/+OeujWYDaMjeA8S2I36aufuc1ReeeJDYdW5iG5dbIZFcMjaSBD87SGgkRw9k48Oa562o1kevLkE+XOEby1zbZrSD6ijiZjQN4cV7Gp7oM0xKHIiAN3WxTrL7XT+6tQeVmxCq/37F+rrxBjWzqRVqp84+/IhX23Hmdz3fdV+FIogo2XLdAE7EZGroqFf14LK8GYrwJ0Qzgm0tHpAZ3j1cK6Ab07iu31JQUKT/h7L/rzOCPw3HwYO442fP4K3dr4uTnQ/6yNMvmhpPkQdEu+IVQP6PZSDSwB9LsEdWA8t9pYL7UUpgNmjK1mcFVanmM7HZZrrYrydWzqcRgaO7snqWoB7UxvaLXb1+DT2nxeli7vcuEay/AbrcTTliaIGSBiOoSOqwR9r20OR3qPGn8f0dT/95778gkn+VA/8X6CKBqHHai0PBZ2bJhoSEdBGS7JeTzojUXFcnsDla2HWrHlRVXR3c2ip+JdVdZD2Ue4jFs421UoRJzAaWl0dz3xq3DGDRGCvWw2tsbGQxbW1mmDZs8/e7oBycmzPh9WOvPa1qNamrq+Pm43vm06aVyGF4OhMo5DDNZz9dE5FYiEnKGU0rHfYTTv48eaKnpy/Rrwy6yUHm9z13JmLThv2Ek43udqNFOlE/4aTjrFBKSorZt1T+n3Dy/t87+vqw38nH3cPJiXJTPFdX12hKYU2Cne8V5sHXQWMwfPqGtkIFHDJuhO4o0mQVHzRcShikO1IxryUYDW+VQIuTZ4VAK0xZhfyvxEf4m8Vf2WL/JZz+/wDQ/V70f9P5FH6fbgAPZjnnXs9uoiu3VX+vAWhccfYAl/AuEXy99xk8emQxWe1ik9eaEeyFRWK+pWqKLJcPhAnz2HieUfSTCvhv3sWQph9cGg+TBgieb7ikz6Ze6Kc8HOeZ9SSORgfw6L2mIIwONDSsdBu6VlmuJtjyMO6sVnA5lAKxWUJMjDs3vj9cWa713NHdDiCIgI9i/3YohQfb+KQQFzTxnSplzQzPhxAxaL+yBm4bKF4dtzA8A5S5R2z+vGnAmHb58AoLX2NtllQurXlM9YnhUNWzj/oBG/zXdB8iZBQReGgRduMcFyYPP59/VI1XuzH130ZM9ybPQDkEs/vSmMDHXU4G25mOKrOZdKncMpofWM0GvdgJUpxDhRDkAowOFto12bdtkJCoYlSWLYKG3cPNYqo9+wqzgYxY8GOG9/ItPd8f5VcsJ7+0tneio+F6lzA29Pw1Mx3h8G/wT/xXSB2rQC1H9OaHyBzPt4f3i1X0SyJrBF0PgG/U8nW5HFnVJkF6Ajo84LO0zJV4+20ZAHOFMNsCEtopsAK/rZWeGpY1z2E+LU8N1JSuX2ontOEcegMAEs7WmXfE4WiUBaJgJleEVApJ6lzRAbW6D9tvEccGa6Rc3rDrmYjrrnwhkqb1Q0w9tMjB9f4mDr2KQIY8Yebop/J4qSqzp7mpPsEdEurJPjXdImH6uehp3KL+ySuwdlHEs3SJzjI1qWIpWY2iBn72b9Fm4N+O55B4KAoV83laavjDBsTCv2buBVAsujwIRyvo0N+7Ib70fie4kP0Qer5HEIKwhkPGdmrqX/kFdy5QLO4ZFpEF8McLoii7CIkJkqv6HUBJy6oqyD9f1GSGBDdxK2dnP3Ryq4HoBl45eIMJxMPejOH34VzM9H0NwV/1oi7eLOi47qpUd12Q2vZ8Alp1k3Is6ZzdFQCOHtJn2fiw+xJh3IU0Hyxy6IDkroQWR4HG+uRnPc1Yjys9fa1Gmf8jBExBU2Kjo4VCvLyWjD0plyRK3FTw/HDadjLMM02TwdpAYJqKWOQjp+EVP+pFLzQ0byyWbDWQ/9lnqWcIAD9f/P1+FK5WTJkpghEiODIaLS8TdYTNXlwc/JWec6ohSnef2725//p4dkaI0m+nRr3CTRV7jhChLcVN4ZpEIBEN4m1LsBT0fXEDP2T//PGk/H8Glijw/AOc/vobyvbWU+SexqorX9vcvYRHDTTK98g2jlXG+zHEDguRhA4ZK6kQ2ooVt/DFQlCI5hxlLKpA2vAd0TS7aLid+PA1m4yBGs9Jd1o54MApNgwkaJRlFkTHVGWRw50a9z1ISxwZ0r/K+ER1K3YVtaeC3YBUOu8JuLc/Y6jV7+qM/zni84yXzMBEkTjnlP9Y7EIEjZfktxy79obBxK+ZLQ5/uJAJVyBR6NtJNukrH1PWUwWIn8jqc9aobOIVKsbihPZeyKaM9mDLqiITFQ0ilDadys0z6WR/MKSReDIT8rpf0jOZ4duOlheIKZz2/MBRpYChXUY+UD3vsZyTW0hyQj+aDglsSK/CwfOhNgG2mZkZjo+PsrVt0d3Jq9SgDxq5X7XZRe9IWG2KPAh/N3iQJzS7VYXi43WF0Mi3mVWsBXbSLEPkXc9pevjrQTIEsLuV0bhobBrKdS2CxD5eCeIR9GlvDm63C69ZDJhMiUz9k1poSoh1+QMhiXoce/j8BIlS9uGkg9A5nYxNvbollMwZUIwmkBAXnJRDjjmxETl3g2q20A5dH20nsezrtigKFIs8nsQ6e6/9vmBy9Z6DLnkonj8QbXOnmKl3GtAkpfa5x4a/DlNRHy9uvu16emm9Vva9YZE6XAFFtEJlEYztH2lnFffMZi82o8l5WbVEarr4EKxCKiEJoF7oO0B6euk8AKVv2Hkd1kA0NvMsFMAjTrRYNnEPMWONm3FkVbOIMOHn3DINfjktpI6L3Y8BGuzMlG+50f1sJ+QcKv0LdBVvDVBVcaaWb7ZytmaXG6iTjr6CPuDAiRh6fTqW+3mxOQyAjN+Uc7VDKSB3utJjmN3mnNZSxtYRi4Zli+b6zQzMtUVYcCJ4mGhvTCnhYH1NI+Xx+AqTxc6JILr6EkcfFpiPU4cQtwkATDy/Teus72U2t9eSdokuMTPZtqKMVpB8H+kX8dP/zDP+ibpN2hiKV7XilkpC9OwfUsJiHw19fHLA7vf+g12gSZPvIkFRCNgtHSfcm7GqRk/LEE/Mw7PjKSKh2/0OqhLiahCldt9hrzrOibdUxBZPZNiIYhYGwNvDPev6aWe8Pth/7dD3VcOAkp2TcY17fBs3mVlFqlx3zERbIn1SIdnvbGBCExpdIwuHZehYEfXsenw+SFZXpoBtIO4H1JHcWDKTSD4gDnPqQGSeOquA7nvV4NLj1MSrqSJ7Ti2muKyzzik6E+oQwjYUFI/h33DoB5tqKEbHjqTnG4j921bRyj1X5qQSUSCDrCVUo2Qful2qa8rjMPQCJ3/g3Z2+wNPFLuUIIIUgbpXp7yaEvGIYm/b9KYByusyFJ75L7ZycFFJ2z3TFTJ4jgGW98EC8rClJ+RCHaWBgsY4Y0KzZ3iKIibb0XXZ9okgz6TT1LWnnKz9xZy0Eax0aGE/7SaG1TrFKkjg7xJDcop+RFhQGvrYNylpYSfKf6n/IT9VjdkLPiAzZ12qw38oqbeEXiUtoE4kCX7OTb+TADmdiNVYvzGmRIIXUZA3T+JLIS3dZHmqLjaWCxyj8BRhUPBeD9M1K8fiPcWxyHPdnLukx365LD24HagTMBhYjC2rwQ8kC7b5e5jZlIB7zqZqZDCO67oV1cT2hFGQMsM37AuC5EceN3YI1mqJAzPWJ7lB6IVrADxA1wV+CdsIoMlw2lJaFhUU5tJeBTrFT+p0ziKmXjpedwU4CBe3rmalss4fOIvhNreB19Skqa1kLGx48GluYoEtq3nKja8GDFqb0Rf3SC1yGxCOGUngQf9/hHHwNTMPMYnXQrbFPF/GEiQ2Ah5GgcE6eu/jKlrLtjgRKE0C9HPxJmVC9MBCxxhJcwoP97qWE9BPTlGS+P4LFBV2W2AzzDEnp6793V+PpZUJuMpc230uxWLP48D7/8wWfXE2Eg5XM23W9Cey8RhRzLVfQ86wXoaYAhgMllDG/yEJmTq7dqCe6gBqspODvagGdwkyKojShS5+T4snUu9GlWnkrbG/RqJnypMZM4n7uEBVOwIGPWtf5Kwq5xMAUpEVp2xc/fpGLlXWD9yQGNRuxc/RyZiElqCed7SR1gyNDb+ZntNzXDbY9KeKXv73mAy6LLXh5NV7f75kO7BUKN6kJyb0rD3UatBr2h1KyyuAc1EeVm82POxkbIjQRcs9qayf59Mb3/IaKtRwmI5dzaHWhmN+GGnvNolOaNm58WEYILZ0sepeefDBPM61DFaNRidKVHmmliY2I43cQE8hw/ZYYLrBiDOqhXRjm7dvWxwyqw3eLFAjpys4hE8mlmZ5gCyUIuzC3mSfuOvtIy8dBZcNWd6KJAoE0cGXukEM/L1v2PtGrKdAHhD7D8+Vlg+Xi+FgMDi6SVS7yOn6UV3hh9LeIcr++UiiiarKLJ8WruQxI6wOfJuWnRArVFIQmieWbL4euOQ+EDoBtJN4zUWhITriYqfjwcfejvRtwDNSZGA1ziJI8tzxDEj1Zu6eJetSljqH9xCH2gqCAIsyMIaU6bnF+in39cMTTUA318y97pHbh/a5cnXHgvql76pyR8XpRvfyHlQUEJY1NAjK7SdjAtRu2wdZwLV8Ejj71CnodjKxP5r/iuVlBlEbp9x/KpE0B+kKfpiHW+9nm3YHW0ar1baVBrfzR0JXzmBjRx5MD5psJIwYQ/bL4S9ztiNa3V7ol4zuPzYcS1c8VziP0NRGWtgi1eHz0x1sHNLueW2xGTIANRIGemMrhp1L1q6YXN+KPuH3mLULYFuuK+ICWGF4RyfLP/QWYCLl9llWbdRfxnAoBPLcZj3fZnWJ3qdpeiH4TDarmkmYQ5vybKhR0grXnFGhgRVQ234MLLjW8QKtDv8ISSf9b7Nk/Q1z+xAf/CGX7Py7aRwziNG4k6o2lsrAsWuqOsrg+P9jGYiwVdl1tn5wka3q58zNuTzVTlDwUi/S5aYG+sJBQtnlX2M/AvbePrDrvKdjV2Z7VPQ+kEvVU9198MV1jk2C9t9gV/vPN63n/K1WCHTHvY5aSkpL9rfK2FwFa8RSPnmMrJXNyvD2NpXpMIiAgkGCzNyBxd+0AZtfIRd7e3tZ/q6SnRzo+Pv6zIfeMTVJLi/CeRt6zPhZyXHc3t0lSNl3ekB8DWVn3tFCnxlrD2sYmx36q6r4A25SntZ3d1155zJ3E0stXtXqnDnwzX7/EJEBNV4GstXqrSIU1eqtkvxgfJ49lw5+M72fiLyI4F/z/+4J1P+j/OpzQ6n+NAEhBC0zJTAr6cW4tIx9Q0CDD8CGPPhh83ZYQnxoCP9f3mu+Gw+k4hak2yE2vbmQY4N3XY/OHkdKQLxN3sffF5JFtPmMowGJuS+KW41PSw465rmUNIs+vXLLu/IM8KX0vzjBkUOJStinfADN2UmBqKpLTenfcVIURPLCYi33BygOYmpLOJs9XrHuEE5d/PjnQ78LDA1NWkjYIc+uVJQ5kkRgnsJCIUU73bH6fZ6Vw6flXP9ukATTbvT3Q8cOzl5+KP/OViO6FzYICiaBkLxyEn5+U0u49TvtyMmhTTHr9TvPu9Cx44Fv7ZL/O7abT1hKktrvkUfm+yL1PPEVenhs/IDNhHhHnKEdMqTwTn/Nd5DI6jeucHM+6u3Vmb1kA0AAOruImR5YnxX8c3e4Fzr2OW7Sz+gxHN51NsQ0WWZG4Vj3JXG85x7zGgM8iKdjy+uLhSiaHrVRFW1VqvrSuXiU3CiK4ZwIqo9UWk2KVHfkuNpULFLueilcPNP4yaEMHHyMIj3yy3STvSW7Ol7iedEIuoBLo1m94CRr4Wp/3XL6m2IhAVsV9xS/f6SnFiW5TFzPdSrWEgpxtAlr/t/VIGjti6IfKftMbjoIoyxCaCQl4MAhw8CAvD4KyeBoWT6bdBGQ/5t0ZOeSVjq9C4ra5wWn2l4BBUBY2EzrWtb4SJMll3bWiKGlTRghf0SxxQM8zCHCTq+32fZh9JlMD5u4uzG2/UxgHiCMzHwhWG7+IOJRqzxo5kMbgWLfxO0/r5Bi0nSb/INfChsRz+/3BrMkwmUPx265J8KOvnkU21p2f8lC92dvoghgywX0bIUa9c0/fDZaGiX0x2AigSP6i1b+Y6sP+HynDf5g2ve4m0jzR3txan0DiWh3bwIDiHoK4BsVhBG0l5RWY1nBO461jhL/k1zh9CFaJOA0e+Gg6NNQP7JkOVf94YhZtXIO7NX6jY5WFSqvwWSI/8QGsKjQ0rrJFj8PNaQ7lJq91b0LnK6m5ymtfFga0bOLNE8No6ReSnz4tQm+QDMzgau+4XSq3z5ItDvboF9SlAnMoqWQHba9J0jWGy9+/x4ODZr+LUo001nQEfqy6NX04vkc2/Z5IaS35pA0jUm8rfKw8MITdTrULeO5JoytYG1wnp3jQrEGAgrVKD3Tl10B/KRz0cQU5BdYba9kyR3a+ReAimmw+9wZqbaoC7FUKtNnDmTwCpYD7Fj2pH4Td1m7mSEb1r4uV8Bd9GXzyH7kna+17lERFtg+jdk1JEIVDD2SqIZWbb5AOeJdF6GtEZoQX07ttWr/w453WJE89V+odB1ALuOL+ID+MOPwtFDVygiJ2Ci193yAo6/MXPLhgw20vZHs+AAcPaf6Oj4MWUK47IV27tFeeqrcuSl1M43d9oy46XY00QdPQqXX7QY4g92Zv0dNUWf9Byx3q+9X20MmDdPC1eETYWoZyg/81O7Xsp9s7bOHbXc6tSNyXqIe39X8h37Zbtp4zticcjlGpjRfmOmuCfRTfCfh3MAlgH1MRzkWfRkkupZBHnnSFBAttJIBuRfE7+vMry0IDfafpLh+zdzPJmwJ48qGeLqzjt62YM0+oejdePxoK/o/Jq2aQTg+R9VwYHEUt0OOVUOKngrJelS8NBaVy8zMA7/wyF7f1oGTQQFIfnup0imi+mMHTCdVJ502SMqOPh61l83DiZA+YkgIjsA2JYoQwaLGthdl2mgjYYR6dKmZlsbbVdhcFB3qIZliFQ55XWbZfFgjao5w24cOERd6K7RNejvMTX5k+GCc2sLikOrC/PHgVidPZ1aLFnZ3Hid1X/K4XWu9sNP+Aqggf9jGN+0C0/sHrUmQyO/QCYTNaAeMzSXV9Bt+97e7jVdvBCQGp+JwZ50HWEHBfbXP3o99Cq1XCl4YyYefVEu8sie2stwTl8l3kXZgXUKDnLYEpi2gDTV8H9QYDW9UxVNN0w0tLL0zP1tbJpddbMfIzAMCsdDmQ/1UvF0FuJ/7mHl5AAJ5nQ2b3EtOFxigcQQ5l2mJhW6Ib/6qpi554aA7PJTs5UCpsaXJdWzLZJtxZWnGtmg0DXuMpxGkbW2fZfTvBHj18wgwpZ2mVuciJD3svb1hRYMpvbZ0IjmDDcqHlIea8QgPClF6R3ZE2cHdgWnLwZzPSVRqUP9WvXhOKHbBG4Xe3SNGv66l5zelJTP/NhfZvZ0aMAiEY1pytqNdTfCOoIx9zi1W544K5hA7fQ4PrCzZQZ8Gml9rsohRGR0cDGxunTcHahHf1SdTY3iXdmVeIyEuCvRjM/luhunJy3Ly8ITk5iG78Y9mOgpSPcEWD5idMMoBnJCakVtnxSUJJtkuTfBc4R7e+wdqMfpjNXxA1kEV8Txcm8k5ZcjlP2xxcRw0XYD/U9krR22MsWxbVlZDGdQzMhj8yXLREiCPnvsA2bUQ/T/EQEqxkKdLHoltyz8l3QkAytiNLje3BHfBAV1IM1p4vAv8WsA3/ge7U/H2EsFb5R7BJi3mK9z6G1DJU5t7RIPL0EHPK9y6jCQNR3rilhIb6lC91BKM1uHmK+TsxNgdgvlOkUZm5Y7nClQbdfhXtXDzI0DA93y5M8SZhMcrjYippBkxw3RrzXVNv90Se6n5ihmUTpZrv5215EiW+rzEsMgCryBlUod1eX6CN1g0TxiViFnx3JcZFu+X3wvkoQvpu5k1YhDE9X7oLoHVoT6/vigCmlCD0nsGkN9c2VF3z8dFBPgrONwiLjjvTS/ET2QqZ3lBwHz3YtxHjdbjbG7VsCd2MSxyeZXtuUfpEIEyt3uzeZj2dNmxy9Pv/WHvLqLiWbQ0UJ4QQGrcADQS34G7BggeH4A3B3V2S4BbcIbi7a+Pu7iS4u9MNj+x99r77nHvueOON8X4wRq3VVbWqvlk91/fNOQHZJzaADcWLbh8SwJmrdwWmqEfN4GRguJZLL3+fUUuocqucGg1AVOd0uz+WwYu6+Nhwx+BG5lmiFhDxRxjb2NSzOFQeiJMggbR/sJXJ0bygN0R7MRun2OqGd3myRurV5CS8VGQ8PqEUqK+NG0eE3js8gnfGzWqylIDnO297T5vqc/EYTCQFK2/7SRtZwr0KOWu644dqwumHYKHiXNjud64CLQEX6ygfnTGX2z4LxKMVfMNEvNosL6NZBMF5N28moQXa2Fj1hTwK/XgPa1VQGCfyoBexEe2BEOvGkboPw4IxIRJp66yGXFMxIeltRa9iJYRazNwivj3TysxZIxkovc6djO3vNFJ37pBQ0sRJc/WoynavVlE2j/GV2qabUpHMzmzyEO1ZlGIarO5UNLoYTvfnB06um/T38xz0GNoi4ioc+TV9QapBIFIhrSJBToUAe1TzEEAksFkbso5lyvxDiBKMOvCXi1uoeIjaPOrcAGKTrkzdYIajmelZ0TFiXVu19iOMZ5W8afrz3HW6trp/MlAinpLlVgUTkoXSXU51SpZe6nB7yKEK93+kKbcNgBIPAl2FHZ14q3fXbnFiXx/p7fgD1fmL3gJiVtdHcjVN6R+byzSs8LR7ayM9xOfpEY6P4A3hrSrHDgz7k+lds7rLX8Ssipp3o9fHcovxJ4a3xb3sUqmzSTAPz3MoI6NDfe0CuvvRVEBFPtmew5qMvhakXE6OkV6yvJRHKCwr1pBPIf+snTnFZ36UmwUPWlEZ7BXunN5arrrbmHnV0N0o7DApa8Qfo529E6ubi8IMWmOuLD/dv3yrgjedSTHfYXDnxo309v31fejH+pj5hUr+MEd2Mo3Lvmlo5Ns7Rma/REnfXScCD06G3lhaZcGZmj02u1Op2PdtckrcgNYy/ZPekqM0Xiuk1/wRwhVwf4TjZOCWx/S7Qtw0721nIZTc+8kvKXXFct4Ih52J/lxp1byXVxuqJ+2RQ0zbxXnZje+DsPLw3qOeuAMNsVY9WjgM/aLzq1Paux8m1I77l+q1NgsIaEeyP0oLX3cUvB2EjmPFqGX0tr5x9jUX7GHHF1TgBIUF+3ruwxVFLod3KWR/f+uRGHIisPzQ+uvBBhDuDhpsCzxVWWdUtQYaB/E1oOuuut8JXR/zMg1aRm7cwr/M+gIyqKepK/OzKF0pa3V22cmyKC0rI7ZwKVupJQdxUXHShcBhTgKJMx6GfwS5nehYIHmvzR1AKMbCTEaTeHZaMjbbLlAxne97ikKn8VIIzKykmNCA5zO527cUrn1gODAyn+Z8dRZu4B7joGLzEv9r94IDHQHu+1hsX/x1O4LmnhWzdAUHqzJE8aLXRscY1CQ++gYbNS4MMcitAs5m0tBzt37j9JeUtYi4/geTdeDHS4No2HUH5DJG80I4Af9PyazO5RToemhfFXXrG+t/UBHIcfB1ehv3h7CR8oxo+dIIT8MCvbf6OYKi3yJ22wAakc74JMpEIEK0mFg9MuXI/N6b32KmBNVeWUl8HsHoHHaj5RqNwHrtYmt/0aHgYfOYcMvP3X0esDegnwXX8hEZiWm+DzGfPnVRIJSM8tU7KYP3AYTg6ttbCjjHW4cDdgAHF7ed5lDQvhcBrzEjchq7V3b80pzdp7nwc39Wi3J/aeVMiqPZ1dllRdG0Qvjbvjx2oe2JN26DAaq13sO8Z/tO5UOGXMteelmh6GQTHkCJwJ8NbtjwdGaLQhy0yppsths88ssfph/RSS/GGX1P57kFnW2wGpEUkde90Ppm0j6U44MKsPOPMpbmHXja0IkPOVnKG7+Y0fmrEPCyGGfDj8J12yS/W8tvEJy4DBR4iH+VM0EPxD2qjkZz3se/m4ZHFxBQIRfGBkojBMGJwWZFyNYxzaNJi2YyIOHjm4acz+pI1T6pPbkYzwtG+Ij4oorwNcewxWz/WivXuyiiSW7dxyFo2uB0cYJou0BhQIr2+C1TvUjlJ4Ra3wlX8CrUHfYdaxbnR2V21fjxNDHlFTyfnJDukifti4it4bqZScdES95ooA+J5Qe1zT3uoUZXnr1kQv6GQSU8/Yt/Z6FW/PLjwzjDGXfiu9GeG5vgDq0FHy0h5v0JE6BuorXcCvlJRGDwfeF7PN4yZ2zgSwDiHzuAUfS91RR+k5j8JUnIjlGlNVjWB607kQYE1XFtqOQS+kTZBlj8cqnpzvo06UWCJA7AoBeGvCIzj3zhLrAyllXmRHNj7aPhDOpf71p2PZa0vbQAMnkjB5HSuKWMg0JgzrRgz1qjy2AICFEATkITYv7N54f35Pfbw2J1LvcscWZIySMCY8HIIggH98IJ2H4FoydOL33WXdTa2IgR/loejbBsauIpEJImb2v7pOu8xGf/5AZY23h8cw/Xndj/scX6cKO/Y+VwFRplf0wiH1wOiAz1w6vn8Ti0zTp6/PVTqN4uMkSE9Dg/k5Sr8KwPui0uD14iTT6plcw6cdKOvW4MVD9CdzC9ob6fuObHO/HwwqaG6x5bYNsKHgp3mPcqgqK/+dV+R31bDI6K1FHC33aPQ+1Dr3w45RlduXqLDY14FNwmD5nHRz+eJ1k/5YM2nLSLlDWIY2LmgqFZY8KXyjs31c4Zt2lpDZ2fE4T/taHf8Dsx37vFJG9iebWEminJT7q/zhJ78kusiWG3Voq5/McRE/OlwXjuTgknFvx7LMYflsP8475w7Ivf9/9s/zEA8/cDyH/fR/yz/XvAHxMF/77/Rx8pkqA4OtUs65UmJUwcNjY26XgGWqvMbPELeA5OzjyJcMJJEt6P7Hwqk3ly9FZR3dLPPGcgXaC5xj8CZ+SbDQj0vvRTbY6AY8F0mY5Wcx6dVl2J7nS9fBpvjlRMAOvnwV05ogMtr1zPJmxm3dTLvakDOS+ZWBqRJse9y7w2wj5PXIAP9Eodl0EDSKk4kMRGrdPsHFc3PsHqeqrPuJ6vkMF0lAmfazKWvkjRNIkrVfy7DPUlDt0HrV2NvTWwEAGrkf714cLzElW2R9Nk8mSTdpfqy3WnXVZb3IwGov1XWz0OxL2e7g+YGRgYdmeKEzzXoj/szVdSuF1sz6TcO+9PB/O7ne/KeTU77pHnJw7S5tmHFIrJs8T1/91SlqV8bqWC6Ob+A+q/IRXG/uuTv0H9+6xi/w33X7b6j4u/rPXyn6b7azoWWjgWJk6kOTb6+QZLKjYT74LD3scA+ja4bgW0JHOUn6u/OCw1YhuOcN9ZxBNzQXXPjzHJOXmjTfLjq7zN1o8SKmwHpFLJs4IBQO/Kb426W51+cSde9eokDe2qcxXoEJUM24dbJjVKSz4ZxoPK1l8BJg0wZxbUk2P+ktRzrXN6oVzEPwuU+5HVvunygz/3ITmlaKIslYMCWylGpfSPymyEL30c45WXdK+6SniGl20jtMa+rpJMrWeRjUdlE6lVcE+4Ntru6TI9dAMIKYQhWabnzuujExwo4FwnapLTea5zChkckzdHLi1sj1btx7MOLZf6oHtC4Vd2giMTRzK1Ryw+C5/qdNB/fjYq+RNYKh1gr4SkrbklLN2m4sdY9Li8V5+ckz3guiPfBuy+sNFmKjH2bOXHls5oOJJleWf6o26NhckNCaNoRbdHrwJZvq+epdqJ6txEusVLYpi1xuBSDdn6LhCzbCNDm9QX/3QTsw/3Jk+51vIZomrVg+6fcfmNMRpe3uiN12OWAY/a6akoS4QFuTBOD8yg6q9EzI6OUc8v5NvJC0F1F3lj7VDIyVVCoypH8mNlgoyCaHBIcKiPSAVR5JiN/vVPJGylepYP84LIn4kiQRFHXsudCEFrDH4KPJU16IwyrfvIohSx9liaDme0sCj06wliTTrr/U0d7AyxaBffBGVCNfPoHPUcv6CWMaME4wK9nTsFbNucI6CoEmwliunf1pQKfzVzezLfQo+gJLZbP18hcTLJRNT3gt+z47eEWalnbGRvfICAhMPClZBz+rT5jPviUUrNNKiq6wRkHRJyrqP7XBF9kpgL/gR5nx8QPmkMVB6F0/j0iYrOK6lli3X0N8TfhNE9tqGm76Na3PrThNpWzncGIvz3DgZqMTiXyn9i5+pMrLu5oLP5yGandZ/jTVvq+fIvsEWvalR7mdfWbI7FoNtNnCFGH8OzhFVP7U/mBL1/icU2aTJWXudEVrtJ4XGvkpjzsaJgNk6EL6NwybwdQ/z010RNWSoeZRxBHq7btBUqSJMGmSBcCZRDXrndjnPoXpJC/xaKDEJwqYs0NqVE7IrtzRmNVoB6md7TCzVW5XQNf9BJ3WKWLBVHP0UPnTi2RGmtSRXiixeXSnqZ/aqRRuNDtRcTw7BSjPRAgGopBkNL6dr7aVJgAIarJWdXSmxvfz+C8pQKKQyIYYLZeqOlhCdpeBqcPxImXgZZXDNafZP0TjlMdTMhc6eXaPly5gj24/Mh8vZBU/6knhvkZly1PV1jA5GPvfG7NYfwcUdn0G9PRvgYlz9bBbE6poMGkVb17SxBW7wXU9QAXFClAbOrm9ubkYvCjY/XJUajphLmf73sIoSHb6rRfEjOgLy8vIrBZJxMEdyw65LncHoJTq+kDWVPEBMafxKuWR8nuFTkXKUIVFz5rPVF9ZX7mfbp1VqwnWRRM3UkHwk0tjmQQ0NbF9ruIKGpLljAxwdTGLsQf7Qh5UFhMotcvd16aNLiLIa5W/e191ZBrKrVQTSjacPPEFyin8Ozx5Q0NplZbZZ8n5has6yJPqhsevdqbr/NWGRGmhXYrXuMhzkr3kR6oK7Jr1vUM3PAye7tRG54CCz2+jkYfLdym/tjUW8hJObzJovne/ZQFZeIMUvJUIi5zxaTZNtE3wuUqcsTM7W6p2D75B5bP/PYVE8131s5+3gcqyLFUSA6Iurjh1DcXEGYbuAycT3LyKJvDd1tXB6bpvOk+BGbiTVJshhf7ZhSEZitSy10wf6uEeaMzcFN1yoZt1w6BnZKw8WIjnj6muMeCMiu2VjLk/enjdE8SrBPMwWfJy8yP37zPzRwbCvZnA3ziXsYd5lKM4LtBox5zF+zvY10I+o9/tRTwgL+KPovvxxDCUgJN2hqrR9lL/KGYUlO/OCTvtba5bD2rlN3hGDCGs8uUZn5V2y6O9aNQTHi89HBIKOj0zlV5YoICfdBz6BP0Zwo/dh5PbKNAhAiDaLWHP/BTzlzzaBdT+2TPsHwhb2Zl5znwgRnHzcCGQSPBjB83+4k8HVwh1JysEXlWDADTPrN4iG0Qdh62EzaaeiSprB4wrad8w1ikB7Z3AJXm0Dt9OOgxg+G1tcS61iE+VCv5UXWb7BCvfAsF0HqwpePgYg6xYafLUX8pL2S7I5y7z0mLUkHs0vBk/mfnLE3OjfL+YnQMK6uuLPaYM4WJ5vYaeMDIDPu4x6deiWkSvdewABuO48xfPN8+eBKERReJqHAry6x11wEp+3pAtCQKLpcMummUdllNygURdn31odyeAdFgVRwu7BPrmxBIXujzxef+MXY7GS9yuuq3H7JWsHQhXsab0ho+PnWYhiSCp1+QHQelVzgyaYxK0yWsRU2BMIpf6N99pJ37LrSqpD2X+/FAYwgMwcNxSp35U/11qXxdeYEXcnVCq64dMKQJ8wvOzOMDFZJBzO0eXEEDcf8ERkakq6pel164BzlernC1tXsmwAi7vv96/xpK6D5j9MvFOCZnLL7FfmEUpiZZnn9rivbznIbff2N90YyCXHrI31scx16OqoFWxCbaYbUOBVpyk8LljuQAxmsjfUXAvypvVsORV7KUbw6c3Yivrc4mO0zTl27Ou/Jnqnsy7nD9hJDZtvWR3TUwOnMj9uXRoyryR2SrSizy8D1baUALkbxT7kvPu/L74wP3a7AJX/T+9T9rY5y5nFQYXU9pmImrB2uu7yGXN3OzhAxzWdQZLsm1/SdJeOSwpHJWgE6zMQFJh5ePXV29EvRXJ6Yo+ML7v0ZJmIFyWMm6/fmG9iLU4dWnHynH31v/c9jPTLgQPOo3A/0qucmnRqF75dQPBou3SGhwZtbmSLTjDE6RwmkZuM7NkxU8MC26oevrf/iL4nafrfXcmSvarncC8ZBb1Ajl7u2+ICKPr4Fmr/416cn74Yz3vmhYEmwVDjAF21y9gBtDJsilrsVqZkhQvczrp3+TtmmJoV1zVG00gsYJYJPsiY2AVmkwp6INoEjDATaSdJuM8ECMiR0taQju9dx/TG5/HHeJD3L8K+5Cw9y5gE2kDrI+8KWvZkTL8bFyLU+p1WYqCksUzXajPt6kIpFPcwSEHZ9LihjSupa3kZuA/QygFZJaX2n49JCj9Si2F4j/uTLyH6XtnIuRqmz1PcVjabp8UspqUEujXapVRiMvhnZPW1dvoCtGsJhqit6QuzsDKusJeEwFSu7mFDDwSihahTE4sjPs22S/PZVD0AABcminaknR62e7PSk/4IJyfr9fanucsdnHQ+coOQ0I45d8Dp7BK/nPBctLAtVPzFYjrFi0CyvzkuHV+FuZ0QTk2Uf4nzORRg7VvpYisDRxNDB9MFFqPAvLggWXp/ueFq9NggjXfZ7Tbwus4QbbvqRF6swjP3DcLjT02eI18PS2It7eLERut6IQiHs6VUpFtiF3m187L3ORH9nbecL6k2K8qumlmQ3HfpoGalwu/uXKjqu6c2rmbxPhVcbLHje2tqLgaNqJ8cwtJLQ9NB59yOC5EVJZLf1lgaqHodcKLPwsEwPrvJ83tf8J6rwPm2Ei915UK+6az2YgVbH4pXPwlpXzC3yUMPJocISafUjHtCYPOWzJC4/3BMN7HqCvGMQ/WifyURtENm2P924z4KZtWth6y0GEGlldWyWjPIRGRifd6HNx7R7Oh4d64u/9RQmiVoESmIc8YEFCXpb8n1NO4YTS0NcD9VK5WnSa6bx0qmzXum962NGgcDxpcXwAzhcyq9aeidEm9fMu4g9rh0GBOLHC3JuosA0gC7PMx/b7dK6qdiv1Ex2c5LIfvjbku1d1SdzN7c9zGp6rYjrgZh367AuarVZRs5YSrkf8UxUkVkcl+p9xv0fYRTZ9nWNnAIz7hotNQeLch1ZZF4ay0H3safcLzWdQopFTiJGoxAa0gyHdnunB8zEimp6aO6m9N6gRQA10AVrjzNAhJ2oOwIMhxoxIWZs33l8UGptBgtyATxycu8UB5WqlzCvG5EBuIf+S0UBsf1W13q+Gt9Jtcb0IxOe6fahKcol98iqULNSXz9C9XIPreanCw+6996oDrJxEGwGoWTVUUGE3u71Rht84qLtW2bhGqDHLxIGdRxMQGlGadaQ8Ctv12hRitJ37B/7GpsMk1rvaObK9XYO0ymHD5Q0ELNCWrO8br2gdm8yHjbcDgDNEnEPpL4aUSSokXY8z96B8dkp/ww5OOfFHk2/BsNMRBcRb1eNabkImVUhrydJ1RTdXxt+USLMz4Py4h23AICPN4i2gHn0fOnKEpvazG3WuPQHCltUaXfSu1C4iQ3WiFCt1ptEuuJ7gaQ7/1G5pyzhy4bB0tzStWKbqKaVpDP/MkppJeFvtp1fmaqzDKhe5j4zkZRv3Bmb/Q3nOZ5Qy7omrETneZ6JFf3s4AhH0FK7tMqAsa9BiDZ2seAXp32ut+RqQoLZo2s5VNfcF/sJ2Q2gD9d0xPg1O424W7Zf7mqlFfn9mwpGHrFmAk9+SSUy2znD32X+2NZU5zDjsmaeW1+FYTmevnUFEmoo5y+5p7UgSZ744XvECWwsKoqyfMQzyC1o1tb5hihugWfS7GMlh3Y0IvPye2aH/Ru4zhfN3CmCaCHmCh70az+Z5btbYUHL4aqQCSn/IBHv8/jUYYxNwu5yDOY+rxLz4gJhyLyDo14CiJ20OdxQfczW+Hqs3Hc+STOf9JwBA5BRYoWHLtalFrZqnyTJu8wstU/YnaCrv5Sw7sZWAFUKlPd5sy6xTATsTcPHQhf7Osh+2BwswwuRihEAjEGlHhbFaw8G53oYvCSarFXA8Ho/gz5UwazbEZlDv9+Ucg4nl+ND0cV/MglDHPlVbRltntSWzKSTMh7Y5kSQ/Xbd0vjo+VrU1ybl7ll3UNEcpV4FwbZcLo3YNI4MGNAIQ7iCQ517egxwj2ZQxC8OaXPFSC059Si8PSOAdIdMS+4JHbwmdEq5/XL+21iaTl0KD7a73AJ3YbxoYiO6J6E+41kgwbA40oIZK8rrTELBbjMXXwTix7QyIZz3UorJL+USbNUQQbJwgNBJ/VNCS70Tq/DQHi8Hk/14paf4arIRb6GwUJizoZ1R3sddy/Dg6EjPXB/DwCYYj8IVTUyp3S2n4QM1RX9R58mtNyNMGQA4TN/EUJDQQsUE4+OimJxnhLyBWAyEhkBaqWCE9xi8yAEUnsYBEprZrHKA+uSO23hvBA+T4HceC74Fb08GZHUlfvZAJyU+TshB7V5nJ6iMyhYs36l6scxZt5UPIlC058gdUeFLa2u2rEIGicEw86+43V+aZZ2/InWyw7hCLOuSPxdW2fHohJ55Ht+rEQk6OPRxsUckzv/pkwzJg155n43enNCOtXqC+2lH9d4EsUSRlpQ/4JWUe8Ox0H3fNfFIWnRDeWBuNi0/mmDq8yS1fzrRo/ls/Z7OSZhh9TPnEPF7hCDSN2GtZ+Ba1JQ81EqPTbnOcEnoyam+lpC9WcZBLtP3oqXTPm/qI/Kr3DkBpyiVpEG3MKkUVmZVPvnPPQR4LZ1XFh8n3IBUqbiq38yJn9b1s5o7V/VWQraFEtt4BFiovuFngAm06Zh5YtmNyji+k3mkcgypObXZ6ot3YWKzsXWu5z9CmjYwmuZV3dG7D4YI1h6RaxWqYvI3YWbdhU+LEcMPfg2EWZVothhT6GxjWCr77ZLaJvrreGcVRL+c6nQqbL2k+jWRvPDA9CBZm2ONizWJUygVcxfxLUuIT/cSJSiqY7WBZ9F+M4ixrs5mMF3Vh7VSFRb7ayxNPDGBoA+XCYn7OtGl7xJyn5IkS7uGlMJqm8WCt2g1dW9on0mCvvI7YgkkJOzdtogVLs/xrSGvaGyA4Zd2EwFoiX20nJRMfFMXfq3ehXbex6yuscqaOhx/ufD+TxYvDF34soeU45Zztg8krJUohCGrUSnTnjFRl4iKLjuTvC6fCTlOxCINuvDz4jta+SbapDllw9AUq9SzdzoptJ9eI42jAgMEey6mVcyTYzOlAtMvvWcCuu4dfzgwDqnPAbe73TepnNdQVZaWQ/NN4tl+NPBOmJJglxplfXcy/HTjddU093lbN2Llanpvat2RMMhuf/OoLv2XEA5Fc3TEoX/xZMNcyrWVOiP1HStdDvN0UJ1Pame4KQ5AoZJIM6GoUZX7E3bmx6OI/Tp4As4aglkCWan899WjP+MOvYpSuACTHkB3UuOen0gadIUsIyphySuBLPofPH2czCDwn+3pEo2qsmTnWrmRxAF+yAkJr7McBsJojDWl1DM5vga8Uq1/8m9Sa+wv4qnSeFCPX0aXyMhmHhORTY1cyZFwwMrCc0GvKLIjGWaPrKb5GL5o5V7kNft1dMQnJ+j6DG/2csXeX+uxyWtYndT39nATU20EP89qjYmxWD8Xru8jY5KP6fsLJnh8Tg+B4jGz44bczAbUwMDpbl7JT7El4pVFxQRPSO+MPirT5ch8TVKKvaeYs29Xrbf5cZ3ri49xmNvqt5azxn4055eHgxqjBW9ZPbxZNpMmCB/wznJLUV4I0nKn8CeVckIPmujodp2vBMl67G8PvO8Vy0cgyGOnkvHfrqm6SxHlWka5ex1ehCccdkm520Gy/dpSemZ4T0XsLW8p3WfCV1WqmXaBKCU80Bel9F9O7FzmbEtmwEQ++7El0V2JdrtMTRAasZU2JEWHt3uwfXiv8y0GIHSYazYbh5RFE+4Qd+fVFx9c4562rob31L9Gu8muLbQBt/YV9KOOiJcda4Qun6g4yriPM4YSP+UOPPk9so7pxBK25lXuhqFnKp7t3CGsCXVe01rdFZoGuNSNSWWSurO535mltUUw3sEq6gCQG84229+6zw4oxDv2Bt8Px04bxxWsORA7j0FejJ+NFaALOyZqxVD1CLKMxZqJVlPazJJ4J8y+y1avVXdxkIf0F7+PtWFPyr2+cS3bgJ4/A7vuFtnlhW2f4pMFJZTbKt9g+jM+mdjtm1jxva3DOkXQsVw3bb9cesQ9fLf6FxM6eKPr9vKAKS9hYb5Y4Air1uDKfaSQxRZPveXLWmo01j12gnLoXv5jq/O61RrjCm7l3RfUJk+BGm/+7c7gmNA+ll14K37TDlh5758gQp9AJ4YqsxjTpYxp1mAOE9K9y3Uas+eO4R7XQ/jP4OxDDizrVqHt749/2T0mTW2lHQWyuF1ppnmPuyshgXarh1J1Fr/uc5grtt4QPjYeXM3K984HAfhfz48363SJec0mG4NLNi3FanSXP34g9XW1efjY63jXzT9lSG54I+h6wOGNp8biY1QstjSjMmQ0y8cv1fCKkgeGZfiENsFYPd8pW6EmY0TCWfehRe1fYXOBJqlwa7EMG6WYN886RlZQilA49i0ikCpwd44jaIBab+eZAeD9RxT3v4SL/yc0/2/RYoz/Eiz+Z8T/z7kgYL8G/Q6418S8bykVBzKEhDg5OSdxeT/9/vMNjY08S3VWMdfjfqzWy9xHX1QXyc3i9Lzv/D/Vmktp7WoksX5+mcRmYjxXpvM7Zn59vCJTZ7mQyG4WrTvt8vQINRpLTwvGot4X90In4f8wmspDIOTd8jtmTiDo2YALvVdai6KQBJmZFXJdQa/m9ITQgxrttyaPr6LP8/CJiCwiPz4/xHggigKZVikHqNfm+UfuAIwzYiPxvBCcEXl8NjY2M1Ri+mRxr8FY2lo+1lwBx3zT+67+/g+hYl6F1dPqgzcMuLi4OdJx0vsPOAcPmsItjnuYUVFRSphxSrnSZzdrPjJau6aV9fVz3mcCAgLP438czlfC09PTm4W+VZOIJJHriyDOZXQsMZU3mD6cv7q5Sbgez8R886ZEPGu7P1VwWt0hxL7jC2JtwotdUa+urq5aSRt2ydGth3j2wf2Z4sKPmV9Wp12OFmtj6dXlbfabDbqQGpEUy0RiLQCU9mhZYn+3tL/SRFkAtgjFGqXC/2/j/XX1H8H9v67+7Vz870MC1/32VXfDPD4oi6IW/jAFU9xRlqHS7u+H/DPRIMspfAlu8csVNW+5eBWJ9OqTY6zM43/vuS48/Ybwcnt9nyXMVDuVnGfyB410FkjiCMNi4YDh71X8Y7Hdb5/JnVnuYwJeITeDrPVU2CbjShAT1vY7k9GUqqsGCvm1Dpj/msmAGAeTcS4Govqo9PHqETKEsGf11XRpn82FS+D81e2fAK1zyeCzKM5pLALxxIcnPxZ22QyvesRVm4y10bqsnL4KA/xb7upfOIKikUDawIlMD3wdIFFjXKf5V/XNPtKLVi80EHQtyfCgeygI/9/TYzCKbZZ/DEQE5aAryl+YpfBhEcRh4xMQFFL2LAmzy4eaeRH1HnkB/wOLwQS53/BVCYe5ikyv8NSo+SWK9OjXFRHvsdkImYym/vq2QrZdPyTsJ0uHOcXx4+jb12W8/1hxDChreu0iTvzV7nKY+UwRZSzSyBLrhTY2c/TPMeizgLoRjLwO8yk+Ys+d6k+ybCv+KnzptH62inIyU78RtGfZRiEsCwMqlFfW3AbgCr0QQ/jVVkYQxzCVTUNZsOSB6Az7HwYHYcoa/SXW0uQSmLRg3Y8j2xk/+N4OuGr32tkVu5Ak5OurgqnZmPeBAIEyewuzg5t9rRxrF2PtD6PCYdcUg14crRfGZMWLwDj3EYONUjEPxYjw9fzohZleOqlWQXoeQpr/QImqo/tb11cvhlSWqF9dgdSxa1Tyn5eOTOE6EYMyZMfZ0jN0bp7lyODl1hL3o8qzTt8M6Gu8OplxWawqfeMiNSr89tvuB4+8+AF5bwrVW8Zelp0G5l/dmETH/gf7zhp4g0HReZylfYdbs1xlaW1wLJf+bOhMSyALH8wlPsEzrltFH3Z069Su61vE0ZVrIDtTfMM7rmMd/hGUJWVte88v+elo/PdI3QUfffitF0E2+dcjtdQN98VoJNuhkRc4lkcRBh5nKKvMFMERpx3QVdXReZKNWzPJ9ICi8nAsoPdBd0/Pz5uf2DsKRVCnM06X9EBT3qgPkSlvquu7rg8FUltFg8Jekrcfvd6xmvGpbg2KuZHRlUAFgJdud6AAauTasYi03uMydAPF/Vu829iHubGijTXx0bWzt7JHSw3v1I9ThXrslqa4l91D1L95X4W2wbLQdSfsRNTNE0+E+TA1WKg1ZQq6Ck2H+fTNrCWiMndmBQW7+h2s0KfWCYwOVNe75kX4TNjdTzFnoIqNQKCngwd3D4hkKBc3blcPHunV9ewXLtoQiNdemPNj2y3Bxc0OHMv0zlnxfXr79fXBfdP5OIuiV3D5CXTuqvXsVm9OvUwEG+h90s8RtPY2qltMwMgkMiu26kNwdDFTuCWn3UQPSv4ScqIuPbybXLiUVhERvLpOp4zvLfjQe73DbyCsrPBH4k5HRR/ssXsAwMkNlrNUOsuITqGQKcUVQCQVO2QeoMIk60zJFbc0pr/EBrs+J1MSEh5jaV7+fVTsKEViStN9n1Yx8oj70kMHe+MVzef8yoM2PD/duhKi2SByaaQqXPOuVI+feLTCkF5+lb48/UPJrVxt+Vow3fWPOXfJLAjJz8ZCgaSppB/YJO2bAlxnLxtGezi8aPPxDQtiP8+XPSyjvh0QA/vid0FXDAk0dY6qZRE/rOwAIj3fBzdxJ2SOhGQb1eVpj5Xyh6FQbA+8vE9gFlajZJ5pHv2cXwxzZhHhI+gSWXGM588uYb7GnjSS7FAmJsDbfWxX+1G26gfkXSh8pNeLc/7uQb+rChXW6GoN5G2+wrZIaSbhsF+/OmghajJW2ZeNH5uOduIlK3h9mEGyKUo0BD4/xPLBdiHhSjsnHK+KzXPTwD6WfOFWT+e7/TuwLAGSgY9GqXlte/Y/HFdCs5s/rdGHEizV1Xxaq8I+qMDIbzCtbbMgUGyl4YnV1qhPGpz10dT7M47L4FtwVyuJ4WDJjja0I8HyQSQktjcxMbGAEkciAAmfpsfs7oEpwqPnvNSFfJ8a0NrY4s0tUDINyyfH+aqYsfsxSWgUuW+8vIz3Fz525ofcvfli4VcKMFmwPSmvjFY//7Yd4DhiKVFNkazU2E/FnsaHpCH8Ivyo5CifSRuHDbsrnaHtOmwHRZgdKLoafckHp+tegST7STgMyLv++uDTVk5B46Lenda487Zd6gpxI2spOcEkYSE41/iVjlv8A4qwigqQcNL8jONN+vOXSaGlocEcoPOy2CueE4+qNt52ke3FjhfFniJb/qJJD42u1+s+VaAEFcyErxKjZMVpEczZASVgjp7oLvvLF6mXtTbSkfp1RwKp5dYgt/Ks/dsEXeKn+wrIqAM/lq+p8PaXLQJHbM+uaNRnEKrs3gqEFlnF8tJLxyHOC1x13Y1rIE1PlUQxVJZwh2fvN9HywwbtQ1YKhByI25CfBzTtqbubHVj4Kd0xW2bcrkPGXJFm5qbrAYhDTwOKOEEGzwD80PjaNtz49k+fmRE22AZAT72R/S0cxfDMCItzWUTViX99MQGSrf2KZYQigNjlH3x25jJ0iUUOmyKX0snEtJPHyhllfhgxSA5EEDXczGJ0p0LmjxXqGl4AwLqgUyfe0QA97GEls/STO2oZ+SbAL8shP5TajUhgfGpnxEN6cAQwj9oiM364hUISAO5rwMbC8V0JaoH84Pmi0cYnMLcK7JwL3iHyJovRpIt9D02sGcIYq48AxhudRjwsx1EErdEqLi9dEXUVF3nFV8IUepD89FOgwcAzZts0wSFPojsXvRlZVvfDT4Pp1lY5Yk05Urgq1rtEDWJpaXBInCnVIxax5I6ZMcnAODsF8vkU+0XToUoX7h06yHsisMDzhNR9Hl3ZdERg4X189YOwPALovBCa/ce3Q9/xIJqGYFCpBeru9Pi7M3Wcd9J5+c7JGDzIEYIx9kfn1REnl9q216h3cg7dbKIEIXU6fSvPa9/+AToYsPT+VxnMkwyExBY6bPBMe8+LLJWHEI/dkLHu04pyyueASELgrxsotWguRyZDn9G/dKnqPAh1n6Uyajkv2c3/IiBLtgDo8Tpc7YpcWy9EQv0fGgL25nam6y0AFF/1Tg/XcZ2t1R+2LwVIWj+CF5gFzhq8ohmXnCt7jkmsO36J+Xuc3i7SvrZe6En/iucKKGnjVPO9HQnGJ/pav+Edcaj8cFAA/5rJL1n+7fqCuPPJ8mi8T5l9n8D3oA8+niR620HOw1UbTVrvRBSl8ggujwm79etTlrnLrheO4S3B6wQ+aHW8YO2pYWaPCPvNkGLexx4A3nkQveTrCpMh2Agdd9+U9HCfe2c0kNh3aia8ugqvlEUuk1TXday8FZ5D5wMErboTNR9DeX70YCAvhGdUXb5gY836GuoQFUh2b4d2nQCbtfh2H+KlzOZzstyHG7iDYLZzIlm+fULxpu3ycgYCTbS4Dqy5uJm4uHm8gkAb54ABrstb8XVtHrVXaK9Cy09GLs6uoDtZn/RGOILMvcrBZSeNzU9NbX/QMZZGWEVkChcWHKB0NDOA8h6lexOzMdRsEmG9PmK5R+V/uF7wPxRT8N+VN/8shfqbUv5bLdQfhv/zk38WQ/2e63FNuES3lVcuhTMuuiBHJkF+qWASt0mTTr1MtkilsEAP3FYT+Bp7xNfM3JzOKqo7JDeX8lnxRNeNVyoVKlEeLa9UGIiaoRPThRNykMslsy8ilgtO19tt9ObIpcS/xKHbFfdKYTfLUr+KO1+TeRZf77i45lLu4xm11Mr3i+2GTWDtdsczh5M5ZKSzogU8nHkdd4FWmdm5emDvT99lk9mlFkWRpROYdCoqKr7XfQDlqpV+WhwQX3xfL12u21oTGluonC/tsfsxidOKkIDNOEcyksRdcW1vKj+GVpmqyekgD+8qjceBSrPKKNNiruzcS4Y812qpbrGa7DK37VnhTB2zzyTc19ms6f5R5rSFrRycCqKL+ruVnyi9ia3M06Pymwj8Xzj/G9//B9D/pmfI/7NE6h+FUP/VoM/kHB4ki1/pPXdrMvIynlmj/UtknNOT7WUA35o7IfZ/Fw9EUnoAJ5fXpQ4m5F+zfniWYJuKzt3luzL9B0H9U1e97P6gl0Va9iPDiVZ6e0A0/Vt0qDYPm2F853dsOoDyJ6cfN9EXrih/bw3jf2qyguGiuK/mSMTFTGky99/esGY2XHRaUYgyTsbIIYIe1WISPTq1qmv/i7h/pv9UAKHUfjz5Zd2Z2M49ZYMc7JwzGy3uQ0LoyAHZP7v/Nbb7hFCI/w0XW6ks1XDYK8XB640bYq7TkNtrDoz/isGN7Djxm3r03JIs/RzcIdiU+T38U50i8v8+dfyHL9Ynn5d+vqRBov3Iim3Y3kTPfe+Zsfi/NOnaNryE342cPLFAd5lOM+bgo2id9lUQJYP0s4749oC163lWWjeF3Vyt7nbqHx+ihx2UfC/Ydtlxz+uVeU+FBpTg3xpUc2JR0uhop2HcI2IwHrNi/gJWdkL4jyPQbRPdD6wglY8Daa65L2s1WSLuNgrB1QNh16k37Aj6ekpXPbTTVaHpwy0FX/89rfQ7+U5141LlbupktZHDOiSWwKirJwv5z+iJNbwdgqqMUd/4+LvMxB0asXJ4uO4nlCCZT+AZ52SlEhFm4z06QEKtW3mb+MGVfh7MmRwJKX6g3Mo0HYDNMDmTujgd4Zxc4t8LMH/L6bBQ/3E8fge73oEB2kx+e+8vJh/eTFTCdStQ8aYG+e7Y1Kbl8dtddDNrI/vdFt4HoAA2NnyCrcAc+dJU/tOaoYp2uyypX8iDIRGqk+pAd+2V0TUwV7Zmny67nnv4Dux+eefdOyITtGzNBMVXOp645Q2moJYjTY4moZXkK4PhFi/tUxyg98g3fvDQAjh5oq12kcvnuOdZZ7jy2Vs9GCXXHn9gS2nVdif5oNHOEVH++BV2hHei9Ol3VXl5+AR0LGHaF58Ia+AovJVgQfmIOYWSgedOdioYIQ0aOnqkNWV5SufMzU+xu2WYepjAmqVpkcxVbbCSu9MQSJlkPM4HFATXJF1hTQseLCdw0lv/JC4ZJY98XWV8D0h2qjXYrLpw7ZHAPPjcVxXltbtYwryBS7IZnX5kMskFRGrmsbfXZfM2K7weqYF/46JE/abcQnvxnG9k0VHRxxC5YRtHtuEJ51ANIv9knLbH4gr75Fp0sIUP3UsYQ8zaqU2znB1eI3aftBzgWIZwXNQz+oyRlHnnS7IaTRA4PUZMjK4V970KywDvHN7N/RY7EweLTHWm+0ttgc+8mX+qpJOU1ODijZyX5DvXDgL+2iuB3sVK+L3VEi7OaheHR71Z9f/JDGw0EBMPVdy7vVOXHVA7NJEgQX/LzXrcPCsl5IffOXIEZmn48gUUj9W17bPxk+TbyYAQwWI3JqWcVAiX5uBnJz/svapksjjUGB2pMfTS3qr7dJgzeiai0zaPIEo0bNnwmbZC3nQ3Z/Sz1vqMo2xvMakoEsq+cssG6BtSZq1ZNAsxDEqOJNRpo2XKU5Q5qEJijS++nGMOUbPHVl6s/6IeJe/45wFxz9aTc30peNZkwmyjveFEuQQ3Qtu0UIt7JXkpv8zoryRE1j71RBYogK+NlWZvoUOFXvGCzFRWnA5dfAhrhjF7cz+A0oussdaN0cUsBmICmiJP54j9RYnKlStvZ1fwgN6t3zb2GlIQr7CV8lUe8u5PGAQf8deWmm89NMRjYwkU7R9745F1b91IQFvt7hp0Zv1qObBYxO1C733uty588TtL0zbwlRStKKbe0Ixw2ncwfkwD57O1mBk4PTKJTEjITN/xSaeB596VFKlCICugV8XH3ujAAFuPOYQAs4MUtK2dq1QPXN+TwqQwy7xCG7sQdo0wUW12DKY/xc70fbyZcdfg32LH0reA/N0mBp+kav4n65Ec3dh1RhOHdUQx7x3RvWdyAXxTH2Hcjl7uO29EjLcMf8Z7jfyVqBD1bQwmdjE4KJQOQIHpayq9EJ+taafle3uFGTCXBmUouXgZJPTY+2YJeR989PngNORMeJg1tZZrxS0KplvFaFQvfGLnpz/Jmyhpd2HPwYjjRtok8aPyrKPdllN+XV2XhvoKeX7ACJ9+9RmmwiocCLeprHUgHO/ZCccIl1m9kc9gNc/IVfabB1GoqwLdF+RybFohNIUyykV7rG9W4bIItpbk9a90oPt4UDgQPgmXM2v5NT1QjWCs0zDytKn269XXocKNjJfdDODz+hg8wWedQWbxazGs9XuqL37OSgffh+qvXex80tm1qU6o7Qe3KgGctDmjaz2VRc3fUf+136RtcBVk9gYGBKh3DjOsyGszUwVyaneZ4QTpUucV/piZrsf3t2D+2aklzJ57OUahec18QP9nSAsVwLGjVYzV2fl4ZGppFX7FLLrXqsiVk1Wen9iUpjdU1WGuNWsmkUuA55rHE7VghifT69zbJOLCCzWLbObt6HY9NLEu52SvshbJCE6ppfl91hCaV9u9qzhqiwq92MyxPGxczZgL2iqM8WdVD0ArDjG8jfdY+y5+oheBU71NJOGfFIyaU+4XTWHX6+UtHRHm4jnzl8bMfa6Sex21TOSoMfWFku5riwxWvJksxrixABDfJWTj8ZkmurgSj6rTS7b0gJcAsLq2ArPJhHDt2H59zv2hjCtCUVNDfRrYkld/pQJvxZhkx80SoXLshrVaS4bwU33OU+xR6mR1dtu9c4jZj6HPltSfLpRxam0s6+x343l/Nej9vBwk01C3+fHYW2cv4hDSesJzPULy3uLgnt3qCZlvZWZGhpW3ZxrayRuPrrhUcD2moQD2DS03flwdqbLbh+iAiYTE3MNhYFSWpMREVIjzSFR3TkydHgXbIYJg052TVazHx98eLR20720AT197ZfXlqsaB/1rx4EEffYjaUfFgKe7aZ/5XGU/P9AbQ58qiuOwiecpiWSLiaej+z4DuJpwYccRyzvO7TKpNOHaXGhAjs0nFIYUVtMZrH0P4/xO3/v9C2tfB8FmlpYzHx8dKmHGgnpBKowFMM1RixmbnI3KZeIblRgfJZy48WKRa/Pt/Uz1z4c+nPztqzGekF9/3hRhPjkVRIKOTCsZej2eebw5gPf9k64jti3pxWLR73p1XWq/wthaUFxcX4/60mC2JOtHCpL3YGcuXTWJ1V15DRMX9WKRC21p4kiUeKogeZDaV1zM8LCudBTI1LbAiMkNdYTCbzOlob4dRVlZ+5vo0yWsh21wUVlE1IZWVLBISEpO4vNyPAydys6+V9GjvdWVlZT9EkftP39CXjQiiBiW36rx+/VoJE2dk4vtvvq61a6rZ5snzzNe7V1d1f29qOImt1iMrlzFabW+2lAiNiDP2WV5U2f56f0R7na+QEf+8KfvjZR777eFCAbos9CsBn0f+ZxECOl5ufKb7MglMZpHjo+kCWm02UjmyqdxR6z2hB3Je1HLJOa2pEnr7D32kPv0cQX+nLP4teRH83JoDDsqZI/yfpvq3X1n4fyP+/+tI/J/EPzHWb/ekIp0Sy2PyGff6wXFVE1tXQrp/qXRell8irsRJ3aeCxDUb0uVSQwuuPU9H4XBl9o5bRkhtbEitqrzX+RfT2fzuBFKbB3Nua5v3EbQnlnxRblpvXM/9mhr07lOcsFa9TgpLbnc4y+C66zEdPYS0TK6m6hRT5FcIWndQymAVg9U2dG+5rUGWxfE1DypgNM3RPAeFF57Qpl3bhsYIO1GPt4tlXCsP1p1krAEuJqm2QuplTKpgrjRM8Ikw0sJhr2J1P+7/4HW7hYlHNBKT7ZA4M5Q86SaniL1VGp3ryebOXLG1HGMT+QckWTvCr27aoffeuOGEve1IdxUfbEqI1e1n94Z24UlsbA7cguLgDwzuRvEv1aTUfV+Fq9nyAMPejRTseyZnhyKP17l3uNSNSJ7RCRDUH9NwwWEiDEIpLBJXoJJ02143rahnoq2Vwys+WPWbr7sbTE/BnR2fHQjWKjlVS4drrYxSBeln2axt59j4J2quE00k+5Rmxn3ZM/brQV4EzUe8q8mIdt+RrfseQdL1pANplFZZR5NRnF4cn56avnndeJ4Gj0OQDW4F2/o7zFrvcsO+aBZ1n6REyfIQTn0+FylD8L8oNaH5h9qhAWQHBbt3zr52o0mS6mB3QRmcNctmkuAdz9ShoNuS9U+K+iIeUylbCb0eovoDmjVhz7tNGuRH0xBVQnrzumKps+G9DzcsQKTVn5sBSWFKLNN3pZNB++IOhpltozQyii9vBNqhP1+Qi2bYGywILyYMlfTIpA8y7o5XYqVpqeU6lsnmqMIa3CkLGet6t/r6DPpNlO6q1b+s1XKZjXAgXuLa7lumymGb9M1+x9H02COSsYnWPV/wkT/y1XpC9FZNaEAIDmrMhaFw2GnvzfXrPMc92bH6+xIcRiL1nO95Y9PRbb3cxqTeHz6qwOjOuVQ2yMHieNC+qy+SCM872l2uY0HzrnkbE40Jj3NArK67nVy/3fCDNFK+xMi+FqJiuppUR8xxspJ8Pxu/yRUqmRusaWise9Uh8P4fPhHvA2AC44FAC0jkNi21XDXjup0+mXqNIyV2yshZMyhr4OCEWcYblLl0/KdOXX/CiaRf0uQqwXAiHFm/HRINK9X41kkKv96H+xHWuWRfK5I1BIMA9UkssHQM5VWkP3VK4nIT+ULctBHjSpj3/oN4b7ffHMbjvpL/uplqInap3EWPy/g82Wv0UYbknlnGwMYC6KAEJo5zBrEOqhKDw8sjxUKQHNK7OTI3eBZe8kR6VMLxzF+2xsfL/cniUDMIC9D7Lcuv0eX6jP6x/YNJGrMKkkp/L5evHWtRFkT3SrIsb3OjgwnBJ32rmohqFVhz9eF5BhL+2Ej72tMmWA/Wdxilo4pl6hEVTsMIdY1FbGo12yteDU3W3K3S+ZPXSYrJjo6QpTSPtn84J7Dwl5medjIq7FEJXSelsvErBTW94I94mpViSO62pgWIPdWFWHcKogSNU1J/Dnj6zF7APVjzRBTEwr/EEls2U5WNb5yvn9tRoio5UYF/pYBnMpUvooiDQkm7pg9LXavVt7OdLO9YqO8bXcgeT/y0jUHaJs/IyRrbR5+itMCadi8YgG3DG+SWEMMFWBslloesCYdRnq4aOKMxFlopU36mRCpzaVd0gM06IBgdftSEumDVOhpcJwWizHndLwt0BkQE4OerfJSOBJWlYZESaXqOMhkYP8Dte+AXCA8L74wc/yOf6Hsr7r3fLYFsb6Th7d1fyAQzmax8lqDIIHCG/QQVpU1mY5SgDRk3OuS0XAFDrWB+j5KyR8oK8MDTWCh6uaWUK0yrkjIYE3nB+smB/XRK2NPblF+UcBNSLhz2Gn19eB4SO5L7XmJAbuuabf5R1vfWTdiz8yoNa9fIOGd9HD93gfxa+wZId/08cM8+3dBQBgQyutXzu7Vd4/YuTVPyiqxJTFQz6aS1SfcyzEf5H6cv5lfAVLMOOvNxjAdLquWYw/rXJNmDNOteckhv9XB/FnAfWfCDGtpAwF1W63+smRUJVEIn0sfjeF8JzNu3OJ/e/RJu9TMFTA0zEftFyBkUkf2ybf5WaOWhGU+ArvgFS9Vbn9ykVKQjOatV6RzSX+hcLA2WElVm1t5KELwmBv5wl2/WtamrsBMr6a3KyRblBHIGRu9HeOYa9x/306tRhKd9+fl01HTXB0Nvhe5W6k20xhxzpM18QbNRZ3xlv84zb26a++sqGe9Yvi6abN+9s2rFRK4HdBr+o57Dm5a8aAuD70E9/9N2t0vQlHaMoXhcPJumxyhB+clHtt/dorX98OUsY/kSqObysraPBwlkFD1OWeVdqRa7HbjYltTJwPfeebhutGv27+CR0Yx/M51yHQR6VKc3MlqxcFe4DleqaJiMFCj2QpFHiYPYbGy9GrTyMx30C/fCN21D94jdwHQIW8wZmn0mfoqh5Ux6T0LLmWfpxXc+7mN8+R51rvIBvVyc0qa+G83yCCHl/IoQadHaNftr48E2LX4fvcDlVdboNlWHGN3K9s4iti55IQog+XZKfdif4Y4vwYp9XPkCw08OJc7a7jrexFxJjPVZKC8U/igBZtklODaZbZlxTmZ12sM91HEEBImU8Qs9eHvlMyyEQWOM0Lo/gAzTbc2mNNxxx0JVH0kLpmuIoA83P1wi3WOlYkLYpaW895sTR7gyLkrzRf5AS9YPf09hs0vuVUGqv2UhTpUqke+IGjXc6uIuyuuUJ33TONBiiiWld8n7+8s9Fg4OaD9t3q9boeb+X2D3Kf4M2ELlTx+zrt/iLgm0iyJryZf77jr4lYLrOz/1NErhygxG8Pcwgk+5xkq6SU8kAzVWWkm25MLW3NklilQK+6MpUZGQkEi5e9hx1+FseZt87eRKK1i5urKEsXjl+Du9Nnn+MPyZDGPo13ZvbtWQz14W8lIJpTACN5I/cd8KQ4z4mTYaGmY8InmritZikvCcAEEk6o21NVceV4xK9XxsTG9NgBIPGFuVAbpu1fqZRjmWc0klLUWaXxCxSFzDPnOEKr4rZZG+NnZM9Y6lXmtw/02r3rrBsSyOEdzMoA3E8ITzaphkjY7jHEJ/wlx+K+bbeddkLGdORcdonpCtQoYaZq/yY/nn1waLVTbva+pxKGsg3mWukx82fl6/7COp+7uLCqxR3qbROWogUkZyb79x/LMOpdKKuod4I8Kt8n3mSqxox2KwWv2mFnxfIlJKx16slohN++pdKY//Vr7ONCNHMBndMuocPVGSBjUf4vDkd1oFucWIuxQs5jY98Is/a0cSdz82NH3rWPnUxpHPbjbjt7CT7YqRfCl4joeYVc6bcAyF/q7bL+OsXnBXR/bbffDte6BuVV9jyjau2kKdURfyw9+U6H5Mx+7Pa/yqp+M+zPvF8PCglYZM7JHtu3kPh4di0aTlLmfb1Qj0EieIBYMM4cHt56+tcEl9hIlKu30GgLStb+S9TdstQkCxDMnVGug9yrmXX30gVxssM/iOg30ALahyIuobsuvPrcLr8CeZ9xSG7GniYkGkJOm6rrdFXgBiGW1LBAMR75bT084HcRhmw5o+ZoSgtZdBdhMI3BmGyh7+DHkvaadq9H+uKy9SiD8pT1ceQLI4a5jS4EKr5PYqV6AjIIZLQWcH3ilyMBltWJV+1AneNvftOb+sy4OqjS8+Vq8/OHmqKOdLZhSOePHIFvZJ+uLDhEjMjrrLmboDfJgSoaLdIVmEwMvgpxWJu3VvB6yYIVojThZyOXeLRbnFnkK8tXq9y9/b2G/Ii/BJL+8FV6hv6Lmeppwxk1N5Q1Dl8J/gUMLdnJQLjOC6FcbWBPchxLg+bAxXD4+U2ydjiOseV+FuzW3MghprPj4jZc+S4HfcywIA5gGETkHqS994cOxJtF5uTCcuxw7+LhEXurjdtXw0tY5wa4s2emM8RnHy8f/p5a2j2nyasOECBQrFirsXirt70RYrxYsVL+4uKdBC8La4t7g7xaF4cXdJIUDwEDRoPtr+9Hme75z3/efNybmzZzPZ7D07c801m9k4Gw7nlk9zc2lFFst6gvEpnp3UREfdhW/6zTybMb9HVxInu247FHgo6VyVzVkijTXFAZOBdLuchc7envhX+mU89d9jfTLeXx9vodKtnNnflmFvDD98AQ9bYQeUtgk+P5cy+YRk9l2Wmvo6OiuKSAWLMMLdZCR/sO16dDdF2W3LuOJBL4vri+oV0hmJwC6/vun9La1xUvMu9nXO8YTGGC5YNJBBJ0z3my+KXP2+iu2rRH8Wre8JNioFHiMLOV8RmpPF7V05k2lxvUrH9l2YWIsesX5BsIoT16W+nRGbZxkT91BCXrpnWvfpq3tcX48E5DtJn/g5f9pvHe7P1KdCiHJaDlqenkPMRqUmX73OLMPb9EhyPSmi4Wrd05MqRpVKJsnVy0Mq9UXuGO9HB6rHjJjaPqyLPiLu89/SoPYuutltCJVq0u1reY3NiruQNwLS2Lm+EWoXKPyc0b57bnj482dO1OzIG/F8m520giebsnsN0KKZ881X+WfXzwxAz1E8jxg5X5VBmXoFioEJPiw7nlmjbX/thlG+JQWrx8/6Xm7W0JZ8SsUSwdSoNXzMql38zqPniHDYNFdtbsesfEaJCerCJPcW3q7SZbjIHyGZR0g4SUk6Y9RhU39vKUbF4nWI/xOFnievzDmttWgVGkqtlDY6LXRfahTPOxOD8GgDW1u6wTOOmzq63NqrX+IpeoYAB6uediQAXM5Is2S1/YqgUmf3rsFBnSvnc/rnz3k3Sr5Xxv0oQy9I2KLHk6g4sOhSGk5+qcEh3++QSh6nO/ddI5cyYYc/b+LETfzMx+3BKGRGUvBsOKjIDPjFTD4Mlbnhx+kXoh0He2usHK88OA/bF8JR1U13Jj09r9ffdijgb9RdtARWfZL12+P7WMs2yVEYXuZV0QLmn2tVqp0s9AZsC5y/O3slZyRie10WREr1qHNaXnVrSW6SKY8lkYtt0zaLLJe7k1+d5XmS5pXrN+TETN8rH1qhxKk8jSp+UjZ9lvEfuonL0dffmv1Wfc354qa/lmc2jA4Q97DWiyhsT83iLIzqQz7DrY3QljfWLlenRk8uFz7U6q1zqfUfhRsbNIomNFWsHkpUOIkqbpPgyTq3f00gmyZU0frGRtTLjdhCWXK0t/RATOzAk5B67B/YQX2OOo/x2NBnul7eROvp6VhO2XjoTOZQuPlT4900tPWEBuYJCDUMhL60FmE2unGpSev+EXoxfbEYQT8NcX6FavZukDxUuy4iqz0Nx3L8FIokJ+VoTyULUA2YtJAvao0Cq09fUmcMjSmkXhJ3VO/Yq5VIY3n9/E8W+f4vM/UW4A726yRltT/NSYmwike98asbfoDyBvO5GImN7fMUwZwLtyQw4nCPDcnMv7Ohxk+8i61kP4mTJNSh3m3fh1vG2ponOyXh0snyybgtUQwrHgPB2+T3mA6B1jeySGuz1+XtDV7vtKXYkm2obV644T+MESE4+YHX3Kcl+8wm5qUzZRrU+0fSPTnNakL77xanBdsUX66yXpAEwU+66fMFAgGGz55su2WfSHZnQCoSz7gyGltssByOigF8KuFmDl0RcbGwmw8C3h3bIlQ2RofL58OqG54MKV8h9LNLxl2aqGuT2FHlmp/SB5h34spYE9CgE5LGdI3IPKzsb8HtVgXuMeq1mtGPoubBJ7aKOZiMTn63hVlJwfk7oKPpPFg3injgxUcqASEvPkUqGtVo/PYCkfnIqYLz4P299n31sd1j0DWlcFWhmKXktDWLyosBdasuIl1kVCDNM0bj+rOa2vCnO/G2adOZA0eanPeXFwdnNLRfRPEVgUHQPe+taAAy3vB3x+moIiFaWt7GezxRzX5MvNkRCwpWO3NTVhS6SyFTF344Oakk2ogywp5XpeuhmN3f79MWH3uVYJQCDiXekva2tsaR5pU5ecbPGDg7YzNuLRnavyLWRJQx6gzrOMuimlkg4/FplvcIz9z8uTtogdSt+5CZ2i1wn35zce71sZq+1w6POnKb+vDJKaEm6KpPuPq5QzuogM+3nkCSbmdvJxBpURVgehy2MMLacLNmBjxtH7p9XJNiyxeSZ6Dupjx6EJPnVJAceiHe4dKMTdBXHFBzy5/Eb2KPUBSmMggZnns2xy45bJSFR/80vcH1NUeNAxOP5YzOyAU+gF/2LRzQB7oQZ55pkypnjA8HmNXsShrLVOh8/qLu42xlcK3Hvylk/9Wwo38X/NB5dLd5vm59+Txj9Csfrjf55YgwBBDdVbIJKxhm3uGzZIk8B3XSLDce7Big8DCxYkEA+byAHeYFmx4Ze2hLEzWdgnwDVOTrSGon4zCI2DFSKgAGuKBiaoFobbKLfSeqWwWJLgtNEUGOxeC7mgGCVqWXgAW3YY63To0UmiA1HuzTwO7TMsEohKpDDbZ146VWhvN1eoOfu4Ag+PabVb9++vXT8Gt1Py8kqum6ry7+wYSY973YdHLjiTEJ7VwcXOrXOLS+NDSTsBwc6CxhHNxPwsNfw+BZc0Q4Mb3ANAkyeJCXciheAm3azeeeX4YMzUO8rKASMoKGc1XxRSh93KaXViPkFYDVqmRVfNGeqfMDDRxOgWgQAdkbyvbWYBXwuQhOKV8MyNyKz3zQBHxefjFJHQ3ajW0/g2eMseTjQqnBYxMILw4PqdGO05q1RbGAY21/sFn0fmv3AWr+mZrZSpN5xbIxkoY0IR6IjJZp5Q2JJpIGjxMt6ya63GMbZJhRuCfPjRcDLSYQOfvtE1rWu2vhA2DEXfOPnp8v9HfXiJ/9f/X8n4ua0d8zi6WWIJX0b9gp4l3N0a+x2omUe5Uh6kHvsFB7sjurfvPxQbF2iY7FcKp2wMfu4ucJrPGs2s8DPn4vDrg6y1XPypQJQSuSwtfAJuN9p5LCO/7VwaDmTcU20ovNoRSbyfxo/VqvuUrTn38cM1NmsOuvTD/d4GLuChlxENx3mMjFaHTd4E07E3RY4DeVth/7LHP9NueyRIXEZ3L44yW9i87+Qt2zDFEBDoOvWgDG4OJXdaxkvBYvTBirWPWrGVEfEmuZMFYX69cw2UzkhrdX6QIYM3k7uI2a3LUqjJfZFxbLjcTYOTiKdMpS50+qilrzYQoQg4nCu3voyQGlL9j5Fppx7guIKGiqCPRoaaoQqfJo8//RmCbUlP/VbYeHKoek8QiP6G6VtO7/av7suFuxabI/Ffpb3f+p+9/v/kv3O1h/jnL3eaJ/tFHl5H9dfw//Z/s/Rf/q/6fo30P8PxLt9sIHulThbUamRTKcnZ2pD3SMk0E/CGebo3YnMTEFf3+LPnqSUWQo3gLDVX8nzV8nNHbstO/hee5rvk/0H8ocNyQge6B4qbk/2ZKrknL0zLJfNwrqeZfmPaFt48fldAkITLO+HNHKa7uNsYEQ0OHRGG5udn4F2EH7sH0PF0X+XhKi35Pt7mp/uZFDSYoVypwgaU3XBI36pi3t7yPO6ergGPlzpJ5dD+sBCuRZCtTsMAGhzfprA7/I6e2B9Zq/l+z3UrYtSkdFI4+W6O2D+vNV0zKnaMTOncclEiufIMHyMADA9uWUn+NdqRl29wo9QuZZir13Bak9h6fZVcwj8XzfZyIRjDGb2uKJWnB975fZKzMCEUw657Ceepei8soNQxcsRsd6KFhQz265WQhKrrGX0r2mY1L7DwMjQoLty6dNXZeEd28MYeZP8b1WysTvmnWb8+0J+WFnl7xYIx56fhz35dqJEoZNN+fAprmo/eUzHYM8qwf43KC3/SaReBvzbzP8yyQRvsiVYqJhplkUQcnsqKHPwXo+I2RJNQ+TF6oaYNaNSlle3AatwYcA5O74da7ZZI2CaJIfpP/DMnnC7z2i1nMyk1nUyn0eF6MFKjVDqNI0NEcT3dh+ZLXjceV/1Snf/qJzCfHat4CcUFn7rbrtmXUerJ32edbfTvLLPX76EBMVba/cO7ytjbchIVUtwQ+io3iMi54+ODr91tGPWoAuI9fd+4iE6unbJHROnJEGXzg+IbaTDUb2P7wv4t/O9y8//OO9/3ZY+v/hr/8hCGfGKystPYTBNCS0HysnWsDWen6ipJjXAaPBV/u5+fk7AJRJ4TzKDzII+FhbrJ4lWeu4/OoOI20HEznW++PQra2tTxXpWb28vCThP0LgYYObY8a4uLiYxOzfF+rshrNbjY2NCTkNhW+ZjH4CVKMbpBel13BBzGlF/HkS5x1UGjU4m3a+TeYxV6i2Gi72LX6ZqxSUl5d3Sf9RJxSLTCmRnUy/2kLjDiKfZ0lK9Mcx695B5PM4Juyil3kvTRgndrMu6WEJ26JvRCU3p4wnTw32tW9ILJtGBZedSloRxn4E97vzlJNcj9afTWtapnry2E49OZWnL5uvsY4TcbM625vPuVW6LxB4DYczQ3Yic7Xzt/NOd6Y178A3VTJA9E4MMvZFdidWTit/Xu9u8lY7U0VW4ys5irG9AHwJmwnGmjfQcALmtQId9XRhDYgBPsskL9rkEaGbDbTStOuJcUvDfK3X+vePr0IKBYB3lzfY2dl/NmZoWX91L+Qq/MahP82Q6H/g0z+c559YSvQPjCX657vdjKjdSmY50JoaQECqLsewboBVzbX/WuM8yf9AZNBKXnxy4WLpm5TYWF6yJ2MW3HE4fhj/NCzkNTGM7jBI0tEV0LjWbjaG+qaP97gBl6fK5d8G+ocsUveWdOeyWrXjgFxoLadif8s2NymWxWWhKIeu8CMihn957R+oRCAddVK3OrJwFl/DrtCTSvREm5tZ/xdU+2MCXTS6Q33A3lfE9Y5LP8prSCTpxv8d8pPXRzLuFSjvUbzKjLAMqzoasMr3rFCU/6WRLGSzZIpbSB9Mm1h5woAxRykNNiS6yvBvIvHsWkW0z/a3PNpaQIu9Jy90l91CPSHKQr7d9NuOm/C7ngf/usvf9w3Fx7saNu4IDcrSEDd//lJv6vPgUki6D57cOmBM9D/i3C+lw6SQzULpiZ4YXSgXk1QxaqeS19I0RptzBt6/Vcxg/UOTf2Mb2T2eMdRzvpItUDuCT8Cj3ypGhPkpLVrT0Y+9nfZ6LxhTjCgGUP1tMqeR6B0f4CGdiBM0l803Pu2SWGsXs0H9225+T4QfhdbXcH1hiRhmgnvkTlQxm8ECwafDkyht5GnfAC0YlKrpMmUR4SFSzV5VU1qy6WRLW6GwTFrk3m4dp7thg9t5/xOUMIFW9+RAYnMOVM83BhKyijzb1Sz2y+QeyIGa5xA8e077Dot+yHaOmMDRUplrmyUtq7rnqpiyrDnZi9yX3zj2csz/st2/7BtR8wZ7DXC/G5aGY9a6YzBAyq5ko6TaJNhec52e9m+r+bUM8HIklwkk9OsDSoub+sffk5lQQ9nfv+HZHOaYIfw74v/0ie546SQ7ypQX0WgexRplr8giIAMqvgx4mrn9Sl/NiIpeDcOPPy5WVcOIflIBPGBYKxAD1n0zhNUEsHr2dQrNVQfaBSw7f4D3b9LAmBj2tU8fEY00qBXa7vDqKPfVkGWXPO6diMqOdBST4CYSSWKs2cSHlSj9prSurx35ysQaq5zpRvzxLiG+k357mDNU9QT/MaTXwTvfRRcfVSe0M76V87NAGQ6pHkvIN8ZTEMdPlZP8L7L16F83+xck/DHoX2LWRf+H8SI2CN6FK8XtuCQ8rZnAZ6328x+U2pRyp1v9vCbylEkAKCW3cGjJHVe2GExU/cmgX9XZxnMa/YwOxW6QEYvvH4I+MigW3zHoaGqJ1KEUvj4pLZ6wsxgyvlB2/eqxKnPFO/CcqzLvTxVgoxJ1H7tIlCv2Od5cH06btV9YzJZ/eLTeb37HpaeLtTvf6pXolMERb6ZNLMn9VdUFpkjCa1SEyos0C/I1chTu8PlFAqt258TEy5/z8IatrY9mmdzNYyeSqw1I05wm6FB8qyQ3XarPN5GvqnwnOpTdmp/mNhkyM5DAlqZKk7ZgR+7k3vY4mjeA3PoXd+YwaRNP4bW8Y/CplDks+almxSz5EfnJrH82bCOKsn91CwD/hpF/R/6flPj/EtI9Qv9HzP8nHPx3NP8v9P3LL/7bU/7fiTL53DEefKK1yJKSXb6NbbDii9z/kbrBD+7BOrQdObaBeXkbfKf6YGiKi8z/oO/+Xm+3TIejL+7wDWtUq0rUKMVf53+LkW5Gtu/D4LP+TZ6Ukl2qUC9CYAd1fdWK4MfwOCY+lz6PvVbZjtlQu7BZbpcF/3ynlmA/b8JxGS+RenOBY+YRq/GdLsOH3Ma0a/f/vWzjLWA/CDe6LgU0zJrLNDGBwVSj6odnTCsFCRnga0ydztf73QpvswSaSYZNN7vf24u7Y18xHs2oP8EzUuMwHfY3R3CAemJKMnuFTPF4zs94ATP8TJwLfVWLuA+iDzsW50bZmNSsjrqJKFs2wr3k6O+tGQBTkHjwk/jYkl+B3tL5PMfChlTvD6A8LS8zNa44Il0ZVQ/FnKw8+gc3JrjjxtYzDmBQDNF/5F9uasK6urff6jeizrvmpej9RjMa7iviu7ozZtgR935oxDQ5W/qWUXhvbQ8y1ihHXU3uqpkDsf8q2rYrzW9K+y4ERfklS3sVQtJRdXAe8gDmtbbapEP4PRNHdiXmxCgQJ+mbwdLcVNoodv8zmydP6/NIGvcYaJnuQtRra4GwLxvR6Pz6mFhEfdVr6Xwj1sTceeY84FFX0xRrPIOW4EM/5G7COyIO/FgQ9d9EnB/i7WKrJrRAJLCCa339oXRYx5mDmxKyLzWe7+qIxTLw4sv80xHSINKr+0Ao7EIIrOd5bIRuVltlODfVKpxlKXRmEhTKT+31wJpGbM9KlwEwc87TMgvMbDdwgWDgcURJq6gebzOL7LP+nG1wXw/2kAMMTtD9dXDer4vC/mtlrZc2ViJqvx6ADnLzFONupoaEiGzcQcpoEv6A4H+7YarPgf3esLoJKTTMLYFeEcEgjhUe7Ka5ZVwhHLokULgCQFcb9Q/Wi/eV4rKEhnhRAWNdbVVY2tgt9tqrqWya11nvN+FX1Yi9d83ve7EmhlbRHjVLQJvPjVwlLlXW3Bl9D4lHA5lHVBxPSojC3j5qg1q6ctu84zvttURGZVVd30xPVmWy3lp2yKGHV+dKb8yVWiacAiT0PzKIW7twrJPuyX5vLnvIN4kKPDMVCod3F2urriA4n3V6azAwIlLgVkZK/GDRZXRTkjPz9r7iQ2D+u0vhHxZOe1KKXks3XdHMz/hdOqjnQDU9m7coLShd0QHkMu+qsqhUNytduifhNcDZ68pn/4K3X+1nudL+i4/+ZZn/V4Gr+05rBWoZ9E+eKJ1q3QF4BBGbTiEXvs3+Yn3s3nwNeG+v9I7IWzY9uOtX+RkEAIjbWodFnbsgMOAeki7kZCwuITFNE17oHxDA8uLzPYN6R4HIs8uLi54Qz8l81TtO//btW++xVOqVXX9l8jrn1acDiRx2d+lJizeP5UA8T9oZp8FXdlNp/uU3aWgU0yYJvJbPea1HSu8CYgKHgeAnZnW1g6XGuy/4XG3R/zSCkGWK5FnpHSN7FscUfZfLaM+U6oMrAD5H63epTDYvFe6kx5i7/1BRa/5ufeNJVWOd7unRQDwLAbT1PHO+dnYd2c3OKfitMODWH4dGstS3WEV9WmWy5GfUy1fPogaY8qg6aAGuzwV8T94cQUYr2pTMpsuNxGxny+8itIXA3dfAwyyavaA6P79s2L4/gY2EgEmFO/LsANQudUu3exd171Kz/KLp/LQVHvPeLX9leoHX3+5FkHA5Cu5T8b95cc1vfZfCfKCTrUXTsMOrQ9O4gMDaGpMyKKx4fBA33a1o41B8v1jj1T1V6OzVFR3ug7YLdLdYqR8yr+NxWmZobf9Ic+D2T6ka/Y4p7fB5qUUpLRCNFOmeY34v7fDixsh/GwEowdv56gfN0O4pkUdbcW+BuTqzGq1CWMgxhmC5Sfc7bR3K1tXTrVCmbpI+82O9Rgvq481h85JHsYJtHfd9jbsG4AiSYb4bfy5mx6bVc1JgUNIsb+ABfSDIjyoNnbzlz2SoD9Y4/J6BIrnNHuX4/AZVroLCb64dNi5c438jqNbci0+2OzC9T6FPIzVi//q4fLeBDGGfvs21JPVtRnUwuWUV78rJZ3eY9pe762ObvENvcu7bIe0rcwSfjMWic9Y3+sxEEEBKGw+o1VTs098mP8F/JgekENRRFDH1eIhOY0LdsLwxI8IWk9X4TbueO9vMeEOvh3QQWPJwUf/anK2N9UOIynsCFrycYAy3lm9VRaDJz1DMGSPPx9+nGGSMhTMXvw3QCRTqMomlTOR/VklDUlnyjZAtKeCtfOUj2Z/6iZ+FdcLq2lPtQuqym5tpiCY248ZG4jV7XH1G14qYFonwX/6DFLO0xB+NJFtwOBjxMJlatrenZw2AYL+CABQrQuVZ0sEB1YFwsuXZpbX11dOhvYn0S3nXD/s3wfGFovHT1KtyPRLkkTec5WaXTrJbwh4oEKrr01C8X9GRnbNMTlHYdXZHyNfyuXqThQNZqznJoJVHjkN/rQXby6DLh3sYMUAiPIKuqgj31dvG+et0EQ6yuHqzwyYpvbYfiqIBnxLZL6S+LOz5eaMqtnfahZLtPuGzjbFcLk8Yop7PfBWOD+SRazZZvywdsRhaycoTkjj0v3YSr4CaQeZSsUTxu96LDBfCNNCOEiu6STwAX/y6bChx2oZaFObh3CFBTzkU+cBzNeouZdaz+eP1UnzOy0RP+Re1fu9EUaFmY7g/ur9PJrf4Sup4f6pr6fLYS07R1fOlfL6jaGfidDtfmzbShOVoPwR0rXSDfKPvc8ZYUvA1x0cGhSwSIFNjGfNO/sYDtP5GIAQmNftj8rYZA8jdZpy+QvKbC+2Irx98WWbfH4uMLhH7+NgNm1wI2rmFXUMqWYt+ehzPBP1sDg9L6ctwm0DLpjlXp379LA0631b0sNFtOlemSy3KkC/kIxiQaxpjZrHjdl8IcahLiZcT/gCHmXcglSqcGKi2JMn9MeshYd4gGoDy2vzCzT86MpyeVTx5DPhELeqJQg8yMSPbGHDT/MyMhFIa+AiobIzcnfyAjdirXHH0jEHfVXX2TyMhAOaj54elXPtotFFVxkgdyPWNVl3wja/KvFNUcLM7vneppR4qf4ls4cgdC1bDxQB6rh4qvyWlcOh6PxyyrQPn86VBVm+V/wX7105mTaWNLs6GYqKzFdLvMQHaPc8TSNsmU/xgoRFMQyDcJDed9KtWtHk+q82agxr9OgCfnUJ9ju3qaJEIhFPmEQ/yWrtQC9kgVUmR0db4j3lzy+KONKjrImS8ChP3pO90zaacq1A+iHIefpLGwj5f835YU0yTw4SFVa09WvcDxnG9CH+ZFEgbfrXbo9tHdwIyO0YsuCQYhRMCZby8qkyvheKLhajZoG+CEZ6iofgEHp9ArOt5Sqwojw2iXm+G36NnaMVolMhSQ+X7JOBDR45l2EUNQSAqGZKbd9EO7WIzazN9I9CbhjB+8YA2N+koHN+3i5tftYpOCeIQDRGTbll1K6bQQk/+Sv4PjUo+ouVnnXziiXpQlKFdjbhYTcs85x6nFE+J4O/WvUXO/k57FjfqvVelOhQi28Sko+OMBH0M9lnjk94AGJHA7vBaJUDvGh/vF2ISaNNjPGzo+tjvYPOqmjC66cQcvkTEns4LbDOB9L02lekYGCZrusUUogYk46+7vg8JcP00XI0pkZjRfTlhlXju8KyId5/Uhym58k2ZzHV9jLbFVkDM8JZcyUTWRGUXF1ZmTbD8ZChfwzOkl0z1P0Iwo0krjyh1qUeLsE5bBvuR5vuTGnkzNik3009xBHHs7N7paaJlYNHTBopW4uJAYiudejB1xCs8qcHA6IqUe+MJbHaK3LUuDAvslWBTFUrAsWktDY+j8pYGt9g8dmPR8aCZJ2mFvUbbeaXB9KdY3tZRv9Ad97TAt4OjZCddS+eV/nq6CwL7ozvN+adMz1ZtiVTto8QKNs8st3CNtiY2NE53pCK2+6KcY/xvbMC/k4tnD4FB8OYDa8cNQ37q6rAAwSA5cWjsBY3Z9vnpE0sl9TZ1A74N0WQdD3gGaV+shxRjxqqsZJFIplFHL5vzEgK9kKP+HDvH92w0pbLv0dU3RvdP6EvdtqvnUyz674ZUdVwZaJe8vRho2862qPbe9wW5nFxtL8JdmkGlqnttp5tqpEiwDFSzJ0G4MXz1CrZHidvdhapJLjgCL7u7Uh8ep8b1vaZ9X8V625Qo5Zh2kBhy2HKDrimpLh86waDnsoJxrqwML1PWlCyeS6s7L6+GVnPdVtR+VZW+tsZgGELQR7YNyH0ZXeB1nvZRaTZV9AGt91bPEAZyibBE9xUv4UbqA5bdS58etgLepmQZfCgbot2kquna3yHfPLd/vqrebj3cOrjXuhcC3fX3kP3OIohjr3DRkgBvgEqqKG8TNB2dRN8bv3qwG+qvHGcrVbUuKe6Fm8mtnj2Kk/eqTaXFqVA6TQPg3Cssjd5s2GsrLVmdrxzzxVldwbEpYtYNEI5OkngKnlWos2kceGxzj4fpw5sKCawKw7gzkHsO5DO1+5sXMbF8JLkWze8pXTAfbwmAJv5YMEzgF5wGSirFDUJL0rZdai+TE1jSvm2vV6EScRe6P/yCVpDcSaAzGiVvuFqQn8sunG6XRGu7DvUKEpPVIe4+N+iUhz1F7QY0P3u2HbAzlHcqe/H1uiCe3Gm46z7nFsA6iPQgJu7UODGKUqm94rjPqcmaewUlcMyblgDH5857zYLDGJ7eOFZ76Sk3DS91hfvFVq07hSzPZLFYic+v8Fl8dm2vs2839x3aeHcDC6/15eJo9HUEwyUALbHDr90HbQnZ5zM1DIh5LZMeRQd+DL+Ft7DQhkq49952qnke+GtBoBc/CIjfxXZ5jPQh7GOryp1BXPGH92/ylehlD1xe2/u1pbVloMRufiIfdoy9aguMV0v4NBV64n87iS+4wk3FpmvIpVpQJs975GnQ12bQBs/MHJ060+7XzBXIERw1Pxq5Er6Qa3nJRr0iMVA0zAAvMiVzLeBSWUkN0K+1E4JkyGKofDMFEEhjiQvEjWeIvqgafsnZdq9sPBCngaNItmPPhtvCaZDroToFl/04fEVsYIAYjbfV6Vv1KZRdwhfFy4vEcen8atGuQe9mpNupPde5vkycGxO2L4nDsyLcsLTWOXKzN++HMnt4L90xfX0qKINS2COF4qDCJVEeFQ9cHceyTFy1uIChfuAWOCy9kFfPqNp7GSUGDdu1G3HB/0X1VZ5LRzmL9F0URSt9rONic/Q7zObKPZTiD4buEn37cMAn6VAVb5fcG/EiJvomWFQeK/e29DHHpgkt/bcgPiFxDJwA4udfjL+mbyXNe3dJhRMVZHg3Q6eemGUvNQa8pkH3yoQ0hYg5HggaSjXFGfnhOh8Z35OpaKYzXRco3TzJ3QgjetO6EH0viSJd1Pebd5Z7RKTQss90qwFImzZ0bt8M/EEhXsXkXUQ06wthB9uJB0AA0whcnTGI+tyl1qt7uY+m/W2Yt9i8md1VQ3rLIXbMj3Y9IuuRtCm55kzIxMklKRYxKbvdHdk6XuIPMKMyi10OCq9l0U4VdONym2SICiPR4YZAXhFyGIRFtAq6sfF/esAHd/InkI7COts8WPVRudpEkfyemrrez14o5EphMJJpNXsiWTuYFcdeBOrrHAvmUbRvQHQW+Y6/Q/eGfRtHQi8Ie4eMOAkpSkafbZCooIO2Jy0J42nnzV6DDTG4oznVGjKTFdLMemz4wPxJhp2H7S2Zj292XtS6ezz30h/dCPtS0fK1w9dRdmGWlVzq+63+Y8nLZJP6ptdp9+yYKYGrhq+mUspVd14CupGWshbDqu43GZsaMKM0smO3nJ8KW1G6RCgmzWZkDBWnpGIVscMru5yG9OsjiHofgrcSZhE443ZpemfmspjE2129n4WRQQu9rfke33RF2sa8HS3Zvl8lgqoPF3iIsRyklztt+nWLqEAOzs/hFeEukJ1EjRP2lPfs8qI8ENt7uMbH27+3ycwmkMwID2bSUiZZxWx2OdY/dOXALn0AB0tRaPwsNrQXitiFImD82DM/Z8vRt8Vag0nB9htp4z6bNIbcK7K1VAGEfufWUhFRR14dNs8knm/a9n/GJmk4njlD8O3rQftDFktIL7bR15VPBZaZucx7ejWujyx1qnNH1barSMBQhLGTt0j35iOOwlsXBzQaHCZvE5M29pS4+MTTbW4zXCHUbgBhQY5bykoesQC52pr3lOMlUf8wOvJanDILj0a9/vwliuTIy09WspvcdvOMl/6pURb91LPMUnyOfdj+97t1B0IGDfTnFoCykRakr7isrrRHCwypSQAfo2/cHDNgALAKQqptyLptOe3e2rIDij7/F4qceiPIRPeRhTKC+jGFQPZAn8T28eTTr6Qw8ab0oKl+DngtVOds2WfcMB493eCIICOSaKPLlUD4PoLUcaX+rKa6FRWax/36jWBaHWQZETyu2cd6INK34xGTuC2WaWaepYkhfoKBvuajc16oeEy+vN2+fIMKYCKluZJQqbCgtbNFedxm1P1qVzELL9RvqfsSxsOfcd6PWZ89GWXeIOGEUwR6rMa5pRYt3rPVKER8/qPeY8bX2arDNRGAoOKzcme0HODamquiIMCpsHjRF+oP05C1VWn/cGgCdvtkRLD4Mu+H9ZSBc9adjSKAqr94O8/2PZjkrFd0tt1X3ELxfZwzydE0QQISQHNLDsDDdl3wQ44Zm6+jZ8CRk1H9tXQzqwj43Lvyu1aw+HCSy74P7gxD9DnTudXEV2e1BRxESMCZU0kSMqzBJ1ikzq/abbK+129e1B9myYbGlT70LoHgTZbgQ5Zmx41g8G6Aes5ouH6Uk2bK04026/Hl1504kshmqzNg+E3DOVv7iphYz0n/jSHtuAItDgkeAqebiOMYppGvpWc1LD+yNN9v1gLjG+6KrtBK6V+xuA8+B90J2aSrVzq52rluDKtWz0TO+Q1nfD588+nVyn08BmQJ2LFn1+0ZqueZfxa7DYeS9qbYJZdwrwOutT1XmZmKOB62/9HuYJC3JyzW/9j0ESZAMDMEQQh0tBa59UM/Wh8Jlj+eV/ggSoBnldnH2iF9sjRSK6j9ZiIXl2+krRDXLDwcq3N2ldgLutQ5sjw6ZxJ7SEBCJdMwGnCwsLQ5U2aw1AQJTnP6flwQ27sEHpihqx3VAJIfU7r4J48pNq/evzI0C5jlnWLX/fTpMaL4uUcq9yYhvDcLb/yd5Enf/gmTINZ1+npR9UvLOceYDP2uKadizcaXBm2LP+BTu8bmfYfUtWwXe3aSRTohW+2nCOiL3ejTncAT+1MibTREUJwJIw/GWPtvb/+EZPZDe4TzKlO0EXPSxuBBeRBXk6DCo3UbSgr7aPPokIcH6mWnsZgn36ZXD3Jcentjmjlv30lBgxzSYYF0rughkZCNXShx1cFR2pz3OhIz5Fa64hWABrctzS+Krzy2t38L+MLffr9SfyVqNHIj980kncpyU6R5ia+mRIDnQFTj4RQzsHypLlVZCmznf93ikv88QJICgCaEULzfdt4nfTmj1OUHtWby+vgyHv6ZHDS80m9MAZ31JS0yUgmJIsbHM0GWI3hQo1n7Ev2SY2Fg87QkBVTCLu/aFktnJ7sQvRyb8RbeTuD8PsctMN9n2nZ9VzijLEkCQy1Y2F9T2p/QxLCi1OwQHY09Go/96oZc0OQhLf0JtVA9boFGPmFuLfwDTuSI+T7RzVNauKjhxloQyp6UGQGi5wBxzEvmHDKpfDn+1Zaouj5z6PK4HB6WCq2vZyYFzm5ONJtS7fjzvcdGXB7TqtvHDq3PVl98X4AKC+I+JTh8Ree9SG22z1X3JClH2CF0xOostaw0/YRh2W59s5V/m+XEko2J2rmP58c46LCpNug91VGcqJG5QoZn78W1P5pAhXqCVZe+M8Neitvk9sSzGMflgRnI9MdIQ2f4MYuzoTgOVzn591gJvzGfNdGYeSZ/FObfWSgjitysOWXyCfb7o2nLk7w3LZ2I4ZlU42vWYwrC9WMccIrpxqe3sxE+77pEQEeq70cLQWt+oZzLA70bbinTjU/m2TU/5chZNqktd/BAFAEMouJvj80l12quiWx4fPkUK/Rd/K2sjyxvPq2gtzjjRPjwhqI2gDavI3tTjK7A1l/e9wKS+mRHuC5jRrQjPlX4Pwx0MPl0rln3ek+G4qB9cz/y50aqOq0V+/h3b1eaNbXPMB1m1vuAklt+toRI91D1okU3DMXgFcfdIVzgiF4F6fOK/OGiBRv8h+rCzNtB8Ggkns7MZnRFWAIdWRG2z5YwFAsSDR12ZmY7U4NHGKJNkncrREn6x1452UOpScrLKFShm8OFU47sbjGij6jsVhZtmEiBkPyx1pXZqS3JMCpqhKfdTQPAFUm2fShcPk473eVM/Zvg8q1whkHv9+dkSvqBtCVcDXcmW8V91WpPrtPnfUtaWamkUFZE0vDD7JJDcmlFIGUlK0C6yfZYeJ8qCrL68aRwMn6BqrfydkQAx/CIeYeo3ZGJU5C8T5bh4hRSfpLaEros1PLAb6t/WaJE+Jw26tss5R87bXFYeFAai9lCT4ubzwKTDmaHF7rnYL7WBqqSRaLNOLRWsq8bTBXtqR3uSPXWRhB8f50vLMvWVB0jcDMeGUdv6IFMwtK2D0h4Jt5eLHXeWnbNhfyRxXBn0/yTlwfoCk6NMbvLEtc8DSwprv5dn0r65j3HsUmguksu9FvIFNEVGu0vA9qoK9OVH5LH9VdTSpW1d64SzFa2+hAI/fxxaFKa/Vdhg9RBfLKzs95QbBYJXcEXPG2x0XVcLyQYan1o8oyVSGbGyGdPjjdLPvjtBiKSF1505+ou69XY9SsrT9mOkbOh2uXlOzKmss9fktryvl4UsH/acbVmS+w+Ekkn74v1PqzmrEks0GlLT8QkuQvIWWYzFciviSMsflH/JcZaJHBDcNYwZOjAm5EQ+EWHYUurZmQR1WxjT08rs18SHXQfa+kLfI7KehdOs1XbTa4I6su6JyncH1TkEEVyTahAu/ljVx9S5SmE0/toVqTt0G8HcgkM7hpde4QXdPXVBL45WBxfNB29SjFbs54s9Eij4l534YvsDHWeRlVqzGl7masOPv1mT47I/FEL5xxB9q+nkA67lQcpNHiqFFnLq0cr0aUg5+RdY9N3cldr9gHBsnZeNVdjVNTdPXgU9n3vb8Tmms7wmEszYER4iA05AqrV4VYGivk2F9wCp2Yw1aOorF0PtbJlC3GTUTcu2qhKbqE9zldVbvtqnnvN4dsv8cwV+h6vSkcxzg0mlvgJkV6t0+pKPH0QEwgcrNOkFDzrH7nplQyPfMzUTb0b0jxndc2nyCXcdiaJjYGeXdR63kAMWkExFFixvi9/teq7z6+YSdnVAD8zlqxdnFtBoZSAHi7sqz7BY3DwrLJ5Da7H7R5Y3mreoc+suHmV7xXEbE2M83ouPdq+9frHeGxXK7BN+NPCBW/czIegCSrm6sOXn2GxV/g7TemZInww0zR9dimwzLc6jtLL1YcTlpcRK5H5PB7nDgctO+XzZ3Ypc1/wN4o9Lb7l28GpaIYgZJMv8pYfoMXodZTLQlx+bYfyfDwcm9N9tKIz9OaW7vGOe/7Vyb6egYFUufIemWbsKCC5NxfxmqpA5B7PURuRYq9W1+uPmLKbNMkBA5novWkpV2FWvE0xSJHu+s+ubhw550XWVjfC6hG7o8/CI6MZOyH33UT9h5jrFiZMj2YKYhIE/Jj5sxdiCcjawCti6HKzwxI22lXkde0G31cAAbrF0pSj7JYq0QjUbqVrI4eqVhcSMUhYRa2qT/cwR+mBEZLs0YmehVP/ieZBQ8oeqXP0ZEno+OnuV//2Huz2MdKWskBzuVjf+LLFDE7N2G7oj8vnFCWh3o98/Nmjd3Xy7Oer1bWp2kp5MlBwZb2Xp7k20eW4HKEZQ6PyIGbLnVEy9zEq9Ha+0qs8HiLsXjuLBNgeNjbD2i19G5cukDKUy+Zs14oTA4hwjXI+5I3RTJj4yDUcVptaGQk++Gq4wvuOCQ3s1z32UV93ydkL1LVGs3v0ZZVo1o2ZjNbX3G/d65KYL0YxVH2reRBpMQwyL16Iqh11/vT9YIyFrh6hKc7g1rG8iysZ67F2RV06YvTtVldrTs22tX3F+x7m66auzOY2kjnRXCITUsyXhUMPPN8rEuxUprdpK39YfBF+CSpbXQLcl5ParWO/PFOuJtrqFg8j9UdMa1Plk3iZmifRx98eWUrz7zvuBw3u7xo2H0SYuO9JBT7BB0PfQVPzCQdSiGUvB2pp6jOO8w2ylWieOuiMFehoN6mtRE63vg52iK20dmUb0ClUmB9hE3EFJekaG7r4oUxe1X/pUQfrBzB8eIEIGeK+jWnqheX3OS0K7x3utDL+qq5q75LNRl6qTNGIjj3KvbFzy0KYeChiArm2pJImB5NX5uYUoXmP9Qs8KJt3KaS2jECiqVmSz3r9tms0A5dESkfZrZf2htkXfKB1AF2VZK7zzZkCe5lBEpqSVBSQKe3XbJ92DqcNq+XjBZxE9xG1ahLk8ROMTIbFK5083wPdlqLw6F4ryBu0KTWFanv5Z+fHdHstQ26sny+QxmMid9HH6VOCCHvP3a8SYpaaqkLml21fdH+Ie7oR+LoqgNTUMzbojUbCZkD9aw7a20FYD8iBI4A3n66ZjkzgsszsysdOjWNPZh5uc61NWg1CEmvuk74jNp0VDQzuE/fWAsodaWTSLPJhtGQOxKDVnToJ9ssvnPLY8/26xWLH+zkPqv2w5CJZ/W9uRI29oOB3KONBu2KK4zNzxg/N/Qy4WnoS7Pz0jzRb4WebHPMJPmfj9xck0LLlLclP/APG2shoZxi8Pq7uxUSsOgxNi4hU30/YbccCSi7NSSZmSY7I91LezJ9wr2cN60REPh674DVoJv2esC3xUoC8b4gBJ9kAH7N7rtC5s+spBnYsbSfQbvLgc7ccvtWlvh6jRm9WD3TF8VrfuxBm/WVVTqH9dmQfOfvtGybpk55RH4YQN/1PDI3v38J3ulAFrwJzAGTg4fWr7QuL9WecTcmZRT1rdq2ZPcuRZh/ZRYp4Nxl1o2VU5j2okmZXlJje4oGoolg/RYuzfMIAPiMDegnytkKSchGV4vJXDn0XpqTjPJuNvVPXd7afcaO5rUmPzaKpa7X1CJcSZbTmixcBK0UEbJwkThjvkUJulzlt4NinkcnYNTOrvp7rt6RPK2ddrLRVFW9rH7/hsxFiFt9vqHYg5ViTktnrTLdz9PYWRzNL5PWfMhXw8jkRGWpGkQPB1dfR4lUcKHEHeF/HMpwjc1Z7OLMVk2Nq5u6RnikoPNqEkwIvUses1uiMvfqC7taIpBnsRvbmp0tan4A8aAwQyvYUC6G2vX71Ty0VaoRYU1/09UkPLQJ1wLhtnn6o3QVrHiFibE1xHAGun4RSBqoJzu6nrua/w0Bd6wHtThxFXq8jmoSkHBqwO6jlqMm/kVhK0QOGO1RWfAhArw3sPWPzXW6fEo6AgI/EHE2PU9FN7lLJ4fvAj3LvG10gh3Qx1MLfgkgS6qhwJE0Z81rIaBUe7e2/HU5BoRT1f+d2dtv7cC+nP2BcJrMBJHKjS5PZGJmjroTsqJMNDPf/tpyjKHxWbe7RTyxW8aJGjPoZLjD/3arHOT1JbFbf5Vd0JMT6+9bYqnwnTVZdh06SkBm3hZXRUpD1Jnr3k6f+VFUSbt3wzDZghsl9U54g8Qa/hIfoam6XwQxt+QX9puVLIl6fzJkr3CbnYx/wiXHefYgUfDpKk6SsKOyyjjVLFXAYi8nwfTBmF71U2PsHMWfHI4XXPmDfvlRNxVGXy3zFa0JhN9/aT853t7QD6WytCYsGd6AekPXtvwBf7HpARUlw09emGq96j4VGvG+bTN1Wa2HXrbZ7g2EVAbdMlECFUklHaEcIBGFbsezBSSXc31/Te3ZU2OrFlbkJxzD3i55dnHVwmrifbUNVIOE1Qtm1k8yBG7V/mXVOJiNouMz/yYnV/2mEAoGeY/cXrxeMm8mz6NkYXdT2u/rBriLYpJhC+f1ybEsB+y7pJmnX+pOvlRbjaTYpwY4/OBztd4YhaA9fkvOO+c7YjLTls6wQ4i2PVlhe/PCdKtGNbPKQzHmRqgWjwG7NaqWlSSxTaxVctmn7gYkri38GVJH2tw6CH2wOBwy//+T9Vi/pUoodrPSjfXnhheFIhdWRrpNZXGq7Y/y3UNkc0YlKY7FXWPrDmRQrVgDDusiit4UtqrRtG30s0DnO/Ni3ehmUqH7VSwxo7QAPdMbJyKtK8FV2fFnmmKptZgxFved174dN7IvceWcrGo9OqSn/9pG906A3vsk039pMpLKfGjPgKdfm9kRNwq9E1uqKWVCrC3o+5FC1JqV3wDDw4siCkrNGIkfctgWkcv00pWsXJULp6rC5MlUTc4TJ/GhiQN8PqO6b8VfxUKcbib/jCfDjse/wxLm+SHEqhVkNQggpmGJfv65YVTGw6Zl+W7/4q/p0hRrv5gz7s+w0uRPCjpOcE5JbA0CWkolg4p0KT2sOzAsos6qlqg7NmKWOlqxalbm/NDfSpHl+u7Cq9UeZhv+uNFZrY7RAwM4N2EjlBpq1cTKCyq73urRnUO+1ZdiVVJspwJZkskmKz/3YA/92j48UohyZcu2G3uYomVzld3sZeviiz42y3fmjudfwbuaTL5oq+2dRlguHxiepDel5BUZ0S7FbuyVkkpW4rQoVllfy1sGdyy41K0PrxlKH5hXP7Fu2jt5MNiDwgCtCZ5U3XubNfq2f0aLWZocF7797jIWwwuzupvrjTht5I7PaipX3R9qr+mGWAO4RuPoTXMcs8No2GAbpyPJYW7exF2e4AA3KtTZ6uRPfSI4qh0rqLPl8qEzbm3N2WuLiAs+OvvxY5ugUyjV3masa5uX4eng07/u0G5FYuU/qsgvR7y1rVunuiydXTO7rIdcmPAfPsYwR5pquEPAkKYiVSx8b7VOemnrMypXw7qF6inXwOjaxAKtc45lCN6Xnc/jFhkdwnpROXidJXdG40zYfGPQVw8EGfiPdVN4CU0OCOUCGK2Su/zgXZbYifTLXGz+T8GaplqvdBBhAh2NuHoxxJjmczoTKksHFl1KzQeuXGGWhFBccb8M75rriwdmogH9RXSRb5Wl4Yy5MVUOSu2PvR0nDZBEDwJI5Y54DQQleFvh3bMoS92bV6/9ZxnebJI3V0JnyWKIooeSBkdc7MDm8XadhwdnWximVlF3JMiWEM62l4Vw9KaEPlSwsbBmLLTMJTYK4sleUbvKHyn5Ut6eL3w7g00XPJD6bO8FfRY3djPe75/hK93SSNgX8uJ1nI2mJgiu6ZDanh5UCB3ndbwKkFKmunUWbPxK1SvI+HQo+n7DKPY2KS3cN6Ice1W9OZTsVJRQ8WfZSAGd+RgWOLInwh3NCmZl7ItEc/igugrWjm6VLzHpGfdacwS28bOY4R8xSTjJLqyimRtWRBczgJgGawgxzYSvrt5SixCMyaV8M5u2SPuwnqhzTlSW//PJE3uSreevfhYxMLLT43Y2NoLE8TbtXnG23wVIEUbE31Pm6z9RmQsH6HgspP94AYY2dPRtGF9+FpfP5Z6zbHc0g+0mFoxcP/HrrC6SDFFRaqCO9golpFfB2oBH7KXzpAjMpkBn9kTlfJm8h3j8mzoMkzUhZH7mbMk6vfo1GWy9+23fVZ8O1G8pPW0NHsc17btbodk+yCnGo+967c1wyftAkiJMv1plJxi8xJbBIqnyW0+3iPTiqynEuZZlz669aUPhRlTcE77LWYSAJ5BCBuK1pl3KKphf//j6tOanmLJdjBJeGixbW8u40O8aCj5Eh5cu94QKa1fjFyCwsvyyj7tJM7X5dO2TFa/CD8GkYwW9rv5R+d8+AzfOESzYCHzxntXs6UcGF2dYQT2akbKqUEYtlWeA8J5T84wpd7+bKucljV6E+K3Tc64DFkMEcjjAIl4OvQHrfmRGyLmbwLFaACb+ch/1Vj9bmGlxR9tq3vtdfv5WLzehHVmC9/9j+sv1VHWPoehG3/1Scftj+offqJsqKXgX599E6thc+3zVazMDA8dXfs/Nnfku67RPNFin6QcpHPhRaD1l5CHpKt7QsGGxSYr3auvcYvgVBmUNTwNtoCUuRKIGZoqEUHcV/sUd0NcjJIaRoQ9cg3kB9Iqz4He4s1SQavPz6f0xPAbm8GvBKd2GmXDWJo03uhoAOzc/ZclfPV0tVcQC3RMO6mmh22fjotC+IeZ6/hSKazd3iQwJJlYuo5++fNqGYeBjn3cedT5uIn8t09feJbB9mx55RCovnEai6kX3XyxXn0G0GQ3e/D2saJM/UIWEPJua+SgpSEV6XtzhBUCjRpzuLSCRchl67J3sR28U6t4rc/7OgDuYB9jWj1gSUP6/K8lojIr46Un9k/vSBcHvUtkRJXJOe9kCUWLTu2KAgFZDpZM+w1+MmhhxUuk4/mtZb/Lt2kUmflpxgE/wtnK7xCWzYqVR0Xw5+nP+xO90cXKFaZM/9oU5Jv6m8YXhalmBL75YgYqP06S4SmzB8icsg9vHABjuJtb/sTimKvvludOwK+d8meBl+XLN5shY0dftZoB0U7nuBxkvdrDdWIygfOfuls1sT8YNAUQgn2mnkfNmX1zkszfm3uuE4yB+fANYOhnPNYRVbUldPSDK9KFar4kSW7V4wBjLbPvz0WP3ZAGH/szNYbNSKL9Fosl5mu/9y7BXzJt9tCb1WqmMkuEuplecvDfHIhGN0nW8GCp6WqN8KlgivbfWBzi34xg/wKXwFshXqYmpv92nPVhB+EMHRm66tlVNFXzVQV/S3N1T8fxTDPAK68OBtD/aQ7b+Z8eBnqF+CLxb4r4QpwDRbg1usnyit4lOlVK2SsFqqKDdNDW/XrPOfGx9OBAnV1/jakwzU3UbnSH5817ulkfv3QTDhcbq2BuO5oUOcja3mMyzdTP32R6qGpRR91l+zXUoyr990r8j3KV6N9ci/BzsIvDctwXE9nNHsCoiHMV1eYl7yIxIzNQWrBlfQyx78LpX0VwyCC39RI9GTKH94w6xmPq2NsL5dLrN0sDE4CMDyacu9VrdzcV7sAkakfD8PdCTHMeoLrIe0fJ7kEYyheN7s1Mt9k06Qz2UwwTT/9xLmOxo+vakEiWX2PGTic1zlPDP2jKaxN3/aCpOUCB/ZqPmwD7adOjjkY1CMiap41IV2rJyTvb7PH+LTl07TqvZWbESRhDcQ/uAyZuHbgV05fMf5jyqZY2n+jY4Njj1jgaBnbrrckNhd8e7amjopHfDO2GdgkHsexaQ9zIM+ZH9+4jHF42ry7yBXrHaq5rD6RQcc+4YoLy0sXKe91zdLz7DIJbP000pdZhZl/jr+BGLHQ0RBt1FVMlpDExShZGF73MGGajWt4LD1apXwjlrBdZ9p5wkC2tS2yAFPiHdT1PIwqhAgwPXPtZGM++GnOF9vJXhDnN4bp2f2lLMy10B+wIr3A3Tw7GTx+EPy4T1HzmLZss7EXE6dpMt2FYvtT9MqWYHst354EqOcZgvp0+xiZpHtK5h/avIIigSbh/+wrE/hyVM+fl/1vL0wUH8kXxnX/cWfR1J0lQ3tr9EE+Hz5C2JcxG3Oukh1lrhvjpScF3tzY6ILqaRmanOXz3fXvLpm+F/+WTZ7Mfp3Gb2YezXG/9/B6DYBWp2il+/RsMkLM1mVlQfh27Y7kd36RKxatNrFWlPlRgY3Hx8MuCM9T+LMuKQP117tfN8fxxz7s1714mjj5/Fkj90ZbQBjdrFuBfWvg8hB/GFnMxUmUm2tloOJAmln+appgoEt4xeJ/Dtx6pJ0sqFYttB2rXzcZuOHwKCgoKFMiTQyPqtCLdaE53kvi+5eWMOnFursTKiAEdlPfj8HxEiQNDQI5X8/Lx4Cr6I8tH8L//oM1D3jRop8s3o+vxWmd+/u8UxeTa786evg/w9QSwcIiOzDsBnFAAAg1QAAUEsDBBQACAgIAE20xEAAAAAAAAAAAAAAAAApAAAAMzg5NTdkMTNhOTJjMDNlYzQ0ODhmMWM2YzhlMGQzZmZcYmxhdS5wbme9lmdQE1y0rkMvQgRRAaW3UEORFgjSexEEpCNSVD5FIJQQQkeCKNIh0pEiKEqTDoJIJ0ho0juE0EtoUkIO3znn55kzd+6dufvHnjVr7Xlm1qw1+31jTE10Genv0AMAAEZ9Pa2HAAAZ6ioeo6W+uv8gBD8BAKxEfS11i4Cp7dnQBEtccPd+jySrlpaWRiKAj0/9rRqDtsAbvZuJMpQi6gZDwmYadE+En7zxZtIU1kw17boRfcNF5GOsWwITRjFFSe8WY5GesLaWdv4bygQeHkLmNj4zZCzHcXf2x7UmDHH/clluIxBuk+MzcADBniAGfFpMbW3Popxh5uPsNUUfZZPlh81epZTrP25woO5RYxfQdP3Q2Xr9eJzm7/d9lTo9+LqAR1GDbJJS51gLgPC4BU4Q3JlB1rdz8Zu7xYmn4HFuk6LIFXOIWJHcWuEWepuQ0czzDqefDl52LTlM8me2zfoAoEX1c4ayzP/W7Yb0Zrv7HtutODHC9+TWWRB2jzDkCC0dJWhZ0jtFBNlNX6mSgheCRLcIqOCLYLTDJPCo/uKRfO+7KotVjFE63/WGSM4l1fI632TgsK1tfcfN8NEJXB71Q+ydeoY/Pbnuq7unSdVo8LD5WcOMrD2XV0nnmlOO+H7Jkx/N/LoDi7vs89/Vb0NkUY0COuv0aiFUkUpltjuvdXuWW/gvhTEDe3nKFzjwLWKq8mlI2bbC73Fl92hj5XhaVGOz7AgvIQPjNJnyMw7ilQOzkVhVMVAcIlsxkgoA8uz0cael2qSEAotn6Oa3m/a6OkPyRqmPOL/0Jv65E62D8AjUGOsVj3cuW+igMXVpY4Jv7fQU13P4QjWf+Y3JHRYB369t2T5UVsX7t/4qeL9PiNV9BOpzP5fgqux8+yWwmjdMlJHaT9zvh+89IX3VnkF2TpiDikbedf6wO3TvAnNU2TeTRmlwscP50BOJuGthPkBq7K1Db4hLKMpSDnsOlFcqnpL1N3mtDXWR7it4q8IutItGDl/cmGLgYatatwaf0GfCR3xFPZEPFbnOGj90/T5NKMEV/ZRGH/yT0bvNhvv9/s+jalY1qcJNrbLjKmyBSLZuCuipLo2my2qwaUfSYm9Orh7X8j1HxcFof3Ja1Jp42aGDC4zvoFo8eXqpLFlHvCfhb1X8+ceUhDdha0Z3ybTZGMD3giSLXBRXBOM9ntfn070xVEEQTfpol3bTS6jfCrNdCOwaimwuLO/sG9z5WmKl2KkRERxz4IyeMToHUHExmAklXGdhJYk2oFAazpTS07iOKkZy3SF5tXDqyNwvRGFpg79gxtcMZEPK3hTMpek6g2C1cKpIhejp1Wsqj7iCs7vUqRaZ7tK0pAdchuu75/2MWBzqmJ1XeM7myg70uFHQb/WcJU8tos1TVgwZeMoqSy/KDjwRXC1s0cgERDEzOLCw+j+4Q5XKgJoQ23TJVZ0vNg77RYsii3FyMnyaZajYvHOAB1XTmLK1DfIzMygMCpe4Cnc82kQGX0L/C8AKcpTs5eQWvcvQy4yXqKYzVSxNyjGCVoxmo9TTPg4qVjp03d3Kprr5SErWMIXCOfcyThZYFUB/VtQh8ywnmIx+rxdvx1K+BOWBD6r1MNF7sLAMPBHdJr/pJCWw0anL0vR8YNHYUS/9eQhPJVSuP88jjBxI/fhi/1F5dsw11eMOdpbNP+4V+cCoAFIXqgOx7w6d0ZkGaDMx7FCCk6lEypGxwd47uJpsbQWNNTFSBuFXjpXziPYUrXC+kx67yleT9ZvODy7XYbcYrSvCvWJ0Y0jZsK35pEVmtmoW08K2hDXhs96pFJOlak2XatmP0gf3GZbcoBRuiRwmkLFdUxNKWpRRtu5W6WE1h+G64hKRkcR33cDwjrznLx4DlCYO7xiTBv30jPMiMuA+2b/raZrRp4iAuHHl999u5W6ULM2AidI6g2ZfydiM/Q3vGnU5qTWM6ucFULZD4PLfZoaa0wJwLg99728SDXp4h7NQ5ZU8z9e8cjbGq7lMfIL6fi3EfDDPnwVY+On6RoFArEI5hSbP6qCS8b0LtKzALkQdEQcM16+a8FxRTv5IjG8kdu+beAL+3GFwT1PyP2zWpOyMg0XwcRyWLLOnL/2sBwtpQ0xza9y/fWjfdw7znlv+pyaytrn2fd3Xb3s9ZSAP+oUISk1U3LYoOvnTeVxNPvDbFt2WQw7WemX3faopXA8tbKy93aymdDmRUhZ5mJhY+b4mF2SzDcPui09tVlgldJpvFnAMiEtSJWS2JXy8FxtHNEGr3VYEHD8bIvsEzn7/myTfZ0DTY58uxHJx1ssWPrP07J7SWXBnJcIp8suaooqGaExRU0up5+5C4yRGTfcMTGLG1nX0rKG5BLeNvg+X8uleCBD4SP2qB7m99HyAU06GW/1Wh/1e+KD8pOzn2gOB76I1HWsbxgvST+zJp18pX9TMXvaThWJB7EJzWN1PicMeQC4dMsBbMbaqkhqFE05EaDztp4CUPSwwgRGYSIEz+jVW+B2YyMb5kgAbwq+IxL/sCrAYaRf78YEGoCZl4ZOgRWypwejNOnRzL9A0598mcbJLsqjo31U/qEAHdm185j6d594fB51fCVGoyAlSe4ynHPgW2PK9riQOf3/D69fVhgAAlBSAMCcAgIkBAIggu8ICAP/KbJsa/38HAMD/8ur/qPj+/x1hmvxqQ2mZTySxa1ijLPF42EzJUGEdrFJYfFibcxmoEFqW3ApqqUuVTUU9zPSnpqUefdntiMn28u0Ldv0QmygiY56TJEiIaBaadkVvoflhtgalk3QQYeSKw6TAC9cGKL+Pa4ZRAtItTLP4/SheMdIJcFk+4rmgvBcCazVKpaoykG8qULGk4DyPuk1Wq+mY+sytVtP1DUUhIjZI8ZmaVJ6pEkkH3N2RfdneEukIQmIL+InWc8kShCqo5LsV/fRF1WcRurdPTrFca4BGiBnfxpKMmU1MSba9hAdxnvOhgYnCGbJgdPQxNYaWXWLZtQoqGq+8kNb3zyTPNKcvaGB/N8ioto+eptu6YbYgzjbrBQ9bwjsy0+7sNS/4ALbp4H6mWze8Lzc+LqRSeVxfpu+q736JIkeyfoSs95rWTwY/EHfRp9zGWfkm2VSP50F8m5w6y0WeKfOKkupSeZ+U6/xb7HKWpy4r6ZXKad/MVj3KOXYgKqj0Tifpz1RvB31ul4/Y543G0cdzxLkxs+0iR2UmD+6hB8t42ExT1ZlwKTEEsUkrdcCWL438rFsW2Nfgj4zIfF9BJJtgP1yN+7OTxfHd9E2ZCVy1IC21xaflU/7TWpDmSSoL+TTUc49znqiQTwQHOFUfdBz5Yr05+rwuTJoo5Ub46XU8eNj2GkyKsjfPpCFBQsa6hM/KGboOcwtx90J/5SeDekNXb5muRzi3YoKkzR5rTIc7Cc+ZLBuULyBU2jlxSvOI46LvwiXLc1OGr13ySXD3OOKTeEpPt8/itKildbZGZAx+PwXIe4ks2gWXF357+1RraCR5ereQLkYBh5RmN0Fe8fpNFuRVUzOVZALaSmM/8C9wrC8hoh1E8L27uO4UJnWpmwOdIT/wNEmsZzSOqqG3PF4z8MeQhdQuGRmoddhbOEzRUWqGOM74BaPhMt5PWnGgiM0hnR4CtHGAZaRXwmCp96Cs+jot6sIOdma7pHHZgzFoGGk/pewofyjPxKE5HebUE3+tPpVbVqwpLNctk9Ji8fTofQrejqvIQU1q5Vh7enBaKMVYPL7AwZQRP2lZJc0MvD4I5mGDnUQQpzuSe0PVM/PuYGswzciXWZ66LvNiU1SUmjsOJcYsWKGLFHl1RhVx+Ch+5sFzFiaGBnhi3B7VHcw1u0Ghko8Hr3KwTfDn1//Nh1/+ZF0DT1HIBczN7h7sCGyTRfCegAcrY9B1e1nk/2w0I+tf8t+fovgXnZfNUqqlMyRUEu5TFndi/tbnFcSDPIJXQXLU6sa0cN1HY9Pf+OmvHb97tqvpaFEzzaZNQo5Etia32iIHU2P8FH+MqbVB5lXbxD/6bndzO1m+wIfAJUt41pBE2ijGrf5rEbyq4LnFmERN6FataYve9AIUW9qEI2oJN3c8muFhI2zyXX55+QBxb9zFvkcx2kdk7hoRtmSvtIw+rzhjpNTkchxkdEXBfxlRd7DA5DxewwayJ2qDn/eBfywqwO55UEbwkiQJtYT4OWtJxPhJBMbkyB30136dJ3QbDRGkeFI8jzPL9CdvM7VmDW6a0O293iYoeaZZpYXqBH6rthzKZs12/fLS4GAOP+4msEsAtJlyiBm2ZH7kf6O/eYvgREm3bVkh2DVN5Ph1LIv/yXxKs67/747NgT4Vn/u9L3Jvxlspdzm4vJgSl4z3Dl7HmbVldICbPz+psLjMMuOnpRZQTjiW0R4ral5WWG+fuPyZu6kJSvLp3uNDM/D35B76UIPucWBUCLEMT3PoKCmq1p3u9KqlS2QSoVqNA7hqDDOmmcO/hAKl37ehqoM29PTMU8QaGqgOeGX92uXcWC5yeU27TRtBhh+hk/Mz1Zp0T1VOH4YFbajZrNoeP4c7S6wliKpwM+FaeGVsbvfYTjqYWKO/KU1vMLexrWtYRzqpGaeIK9W7SmMMH8OtmG73Dr4x63q3U8914HoCaFDPYNUErcJ9dSfxTyXvxsWFlrXLGqghxdYukq9Ry5/RnejD7MSlFqBUbWH2d2wOU713Vh4pUZo8Zb/TqzxHzLkZOoRxxytpCSEob7iVhsAK7DeH9FxEPseY6b9GK588DfntBnpAAPo6xR2c0z89MwmN4mabXvcS/1ZIUeV4GyN7+slQw0/xRE2K53Fu4fuGaGUHlnhQFWuDeBU/bn3ri9fYLn+c16SgZ0N11STGV6Ex2QE/dWFrhx9A/lD9Prl4iArFfqhQsWZs9bTpbu0lk8GyXJzowd1/ISgjyDpvc9QEdc8bn3VjUFCZDziYeSw0RGJ6BsJdioprEM32DtvyfcaN0cr1i1b9vag4egAe77Qnx5PRUi9ctBd2HDBLjw+1uxWF73jpIob9IjAQVYKwW5qV7W8/EDGlH517jnh/enlmH7rjHYplUKWR6hXMH5pbCqqI/FoHCpiuz7J850L5fyWp/1Px/4Pgs44aOzwbTUQNW9jq3V3ncSiMPkwLgaEZktpktFC9Xuy8/G4pM5IFROz5RU3ipVFQSEkrvCL0Ueg6vwpOZ11gu7BINrnrIR+r99cr2C34Gqs+P3xlKObEr/su54FrusiB60fxZMsqE3kMcFISVCh7PStNs8quFqNjwy/mWtmPnpSx7ILEUitOKCm6btxgsFdUu+9/XBM0PvcbPuI9rqK9Wk9hL2HnmpvVVzlwHhu5+oGE6HuMKZrfr9hKGb+yCoLxECM+C2RvzfBVb6bmnCS34T9FKfsyGM5LW7g1qDTvQBmMXGG02ZWyWU1sh5LSvZ+pmHGlIC/OGbx6S6wMbIpTZdEYFY2YKnOKz3gZi2/iv8riVB8v7Xqs5f4ZdSuoFcGV3gd2qe9UFAjIjfFCNFf7Rghfv/qee8DudvUsvbxVvUxG6r/1qi6aiOzYHWvMb1VoA/BMMssn7pSVPvCL5hDM+oEfhGTDQNyco9cubeIxJ1f2cCvuy3flCRRHJHbVmM93Svn52XlAR49Thi49Jth+Lo0fz/bTjpPjO6d9HUbuYaYT4K0CIPC0DFm22w+3qvpa+aeGRAVMXNtq3Wk6+nQaYJXR3f29Bf/iFUHrVAv+11CFMOUQMzxRDDzo5HJnIKyVyrcBbpoUe0ftKhWfAfcjxV/s7Pa+y+HI3roFUdAqGSxDILhG/QIOjxjbxNHrzhqkZHEKlx+G5tKho5VC7RGRtFnzlF6jjaB61I+CiIwjOjiDIQeHZlAbejBHu85A/DZwZqlqGFqeNWWlbs2xz6GfQkvTdcMhgqznG4/1jn43QUjACkHu+4EiD7z9hn6g8imXW+wJdGgM1vewUhYeGelsaklNRUMhTNL4obVz3Jemwg4etPY/3S27d/2kj52rWsMyOxIduPjTNd4Invod8OSbKpyzDWCxHWW91HRRQsf925TksGwpFixMtUieVbB9EeYcKxqSySu8BEnTdTliaQNknXf6R6JBXEY+iR5HlM6jUZtDjj2VPif/sC9TXf+scE969+gtqHKThUHNnyVcOvEEliE1sSL4ettdbGUIMvvz2t20KxcSf0EJN48g0wslCza+5Mf9msQnth1VM9MvcHiuFVeMf7JZlJUbSeOS5Xq77+y+1buyMjysAB1t+SCvEZ5zEroFiVmZs9ntOhaipHhLXFpb+8aYxNqlAoXE8mXGW2fVS7/FVagalRUWfDQ1Yu04mtNo3HIO4JvuVcwDlEffb5EWbdI/u3v1uyny1s2yqhn1EEW2ycveqW69Pnfm40CxMAh/uubk7Lw+51BNt0d6lXE5Mq4LhVpFo9Qrsy5aj2NIHNtkQTtna+lscof5ZqbioJBJ+fFk9+sLPuO62R2uh7R3qDphS557+qQH1TR7DZvLYjHMmtz/mSRJVfK7cU9R/t2aKkEHEFTnuKzj/xO7D8SdBBNCOZBcQ+CFxr/tO21iNwqiPL+L0nX6M/uevJBZJldcD04I0CV/exS4JkRKpY3KTVVZ0aH4OAFGqeoj5mEvjYNoPCL5GqnLUkDmtV0fsoP8hBmjnJulMjCS5vK3kJbUj9fQFRR/Aua6lUvwhc0+Z/BKlhcbz9ylbh5E3VDfe2qgtpXCrWc4RUvlFTd+9ELVKmBRm0BcZr5hPBzM/Z5mzJO0W9thZ07Od/zwTAFx5VDseLED6wGeh/OIVLONaZqC2NHG5lx1TfKi3B8VxbniqcvuGs7ZoFLPheCBnraDE/pWz6AnzgU9hR4yIvfRv7EFZuGHrJPWrTMrRhnvXuZSuGb58gl7kQ0MCYGjBvYzqUeyi7kDfQd/VKnm6lCL5pSE9MhNPZBp9lWJWILEC7/CWtRRDRTIjtrsoBE4SvVJ0SabufO1rHlpjXaKycd5rMjr5+5VOnFu9You2HROwteg+SdDEfJat/HWwaqPmQ4cfRx+QTMWoWJHhsW3/x48/vJlPjKSLOtc2z6J9q0lLC/rWv0oKfTb7lm+xR+7jKE0beROx7sCVK9LVf/uNYjDwCkLlvOlP1Ps1z4eHrawjeyfrzb1f04Cw9tvvdZWFLir4imNEfvobKm/Kcw/WItA3pc9niVJodlZ/xYp7qaa0xuAAyZ2rLxMvNxL1I2JOxxqeYHK0bbAd9aG9ztLdeQDJ53cb5uc40Q27TMC7bu6NfUJV4OL8FABWxeT3NB0BceqfzhJopLB97Nw+yqbedbrLsjWulcNKxqXRMWen1Hr1v9gamR+chLt4cBp4p6Zu2DW0Y1OiRZ+h6U/osxa8zDhIwL9l9tmXQtsQeBml9QHyg1D2USvcqXMHSAJ4Tl76QjxMcRNbno9XmNiX9y2AWM65Rc7ALB7ss7nEXa4+3CBA1yUwdz7NPyHk9ipJQm0VaAWoVrzHxSGezmY9S4uQVmleFizUY8mHuU8Omxx55HVOsat8cb8ZwX4eTV8YnZtYRPPxLEIm9GqmxXHbor7SoTWKJ9a83hJvasy0TaBSI1BUp41zDpD3K3cUzzxPKx8Ca1FsQMtTZzr0eh8zcAusqohwRIWSya+VL+p0B3p8hLICvBvmK48ktOg6QKrcjlFFgq+H9oxj+xX3XzJSOIcOINPrjbkF4UI8UQ8jVUmZhZa8g5QeCeSRanyzvXAJxygn1VG4aPmHELXoLbW6yZeBYa2TbP6uS2ARVhL9plZ9G9g+YoN/owkE8+xGig3GUCzCYh/7Xxz9OsEiNgQAHBlkWK0B/+zbhtU9Zrlycg8fMgss3UcVzwEzKssG48/oc8U3jfylzI+fv4snzQfEBoS2wqvDh3To5lSQ8cGFqdUT9V3jL7hhGHnSQBja9kHPgfupoCro69tolWm4RTxH1BLBwjgCpRUORcAADYYAABQSwMEFAAICAgATbTEQAAAAAAAAAAAAAAAACoAAAA1YjA1NjM5NmRlY2E3ZTJmN2QzYzY4ZWExNzBlODQ3ZFxicmF1bi5wbmfrDPBz5+WS4mJgYOD19HAJAtI8QDyHgw1Iegt7LQFSaz1dHEMqbr29uJH3kIFA60OFVEYPyUClaQ6n+GY2M66YqxhxwHa1IcOkYoXjRW92T2D898h04/7qjXdbBGYZrX++uNdySvatZ5tVjoAMxgYUGH/e8MyLPMZzp3vrP+6+SeXbTp5yL4qtO/yWwW5uovvp/F+vLtRH1ZR6S+tmVpWudes2v++YGem7Xe5c5GXdDVtCLocKXFzie59J/aRr9GzGIH1j42yePnaQyZ6ufi7rnBKaAFBLBwisWxWX1AAAAOYAAABQSwMEFAAICAgATbTEQAAAAAAAAAAAAAAAACkAAAA3Mjc4YTBiNWI4N2EzNjE2Y2M0MmUzOWY3NjAwNzRlNVxnZWxiLnBuZ1VWd1ST2RL/vhDYUAIfAoLCQkKQBUWpEhIghOIGFNRFpAgGQxGQVYOIoEISly5NjLhBIsUuEZJdRIoUXwIrqBuKB1AMICWgFCmRKoQXd/94551zzz33zJ2Z+5uZ35m5mYcPkpBK25UAAEB6uLt5AwB4TXaOQSjI9m+di8EAoBjp4ebsk9A/M0B/5Lv444v5KW5hoX8+x6vd/Xqk2Ijtvku9z8gtiBmJVlc/bZOpU2F0x6MrrIWKVkej0VvQWl6GrIyM6C5Dl58z3Fq3vLlTL35jcPpxfEnsusP057qh2FmmF+9bgzRhI79/d9PySJGEHUsoabpy5UrTFWmTFoWi47dpDajcvfpybK7EAlpK9xrupTbJwU48YqybJF4Do+LNGrb6puIoT+XkPtJB3Lx67ycLrAOry84XsV+rcJESwBqbA+BhPGmTMv/08Pt1f461cQ+J/IE/QHmQDIeueXv+JUYu7aXEo40L4vn9PJPseB4A81Z6lU31e7elyaRl7MQ7PZrWA3wYAJq2hoX4b+9NbUxl6anZCyapR3VGO0H4PWvju/xpKj1hh95uuHiUZ2mmNrGmACDcTU0mUosEb8uaIaa5IJcazBIXgSjUfVY2UiLADP+dpjt/mT9K8bB7i/2BSNzvXFg8eoSslK5siWM319yRVjX9IgOS0Z7Cs+MSBqNr8e8L/MwlU5xtQ3YyKHDxAs9qNi8xIKM9AsedumnRilWXObHE/STStE3J2z4e13hLUl/5pAQu8ZKHruWystvjPfRVz47ZG992fr9ML+wLpxq9QCi1fWweezj+4Yt5Soey5ePB60OXvCX1a9+kenvm5WAWW+QWeprnXk7oVVbjfuecx0gr5j7xvt8/EPf8nb6YlU9zB36mEhVIJ06SL/4aHXiz5wsxgSAiRJL7Mjm3lnSXnJaSYZ27wNVTkLHYMX8RmVWVO+FYkM5vmAt5OWtQbmC9JIB1hoKfG3C0kOcj5eitEUibaae6djUVIlchjHo4LZDds9o2x93olOUzwrO8NaAjLmbvAkMCg64JMxreiknH6AvdhiiUaplW3oH01ZXJmfVHnHr6ucbM/zAYdim+RFrRHyt+CTiHm3lfhRysOR4DgFGItifU/LwHABwOgCCRuII34ByVw/hNaI5YCuEQVI90/xZUKZ07768vjCMwGBY+RJoGYY+D73o4wfQCPUkyFADCXNCGFfuO9ZAC7HW3Rs0oHkq5r49TgKc8KPV8nffMNj1ZxhFF81R7QatQBYJkdcEE/Z71dPB0QhbNL8HI7NFEEg5LJJrAxX9SO6Csp+WZgiL+bspVazl4irencbqu4EhdcY3N0FQ1eybuPnYOBMs0mafye0Wi+pVLAsOKpLrqmIDG1q6670BMZEA6JmgrQlai+rNx8mrhv08+3hq1WyWaH4jEjnCC6TZmSqO3dVGoG79ZYURaz8YKZOlUHSs4ECcvcYxQgMHus9gFr6v+IbeP+d6m/GXf8d7lY2xdBOJ8S5gPoWKR+C+/7/LQJVL8h7orDKKpyZGFpOsR/Icyk9myX9V2TS0fYW9DIDRDrGzfdGAHh36tVd88U6lI1jNOTN7sjWfjEAgM1uSt4Cq7Pa4WYrriXk/lUof7Vur9Upp1dBRhLmdbxt7wjBz0v9N9lXRQt6m+6VaU9NiyuGSz6LIZCvWVfPhkOOLCGJkpZNmYC/F/yN13xGvbHYGgS9bGEydNbG3NhPhbhxKPZlVVmsInZqj5VXCwrCa0+++RJ9cnN24Y2LlCUKR8+KRFVlV/kndz2ycRkVhKxUglFEPvDekhtjYC8fSHsfI9TkK8dx455iQKdQ1c3YC6VlA/OEkth7Kb+YWywHeh7GOt5oQinv+MaZ1tYt8qg0E84vBzz6EA5OJvaBQKQCAAGEy2GIwXNePOjCpBbB1pEHCHwz/hUc08kj4IHjRGOSlz00IF0/kl0w0QVKp5vVd/1WvY+vKYOvQxLKS7iUTrMx3AqMFgGLzJw5N5DgjEVx/P+gHMZnrDVctxeRC86lznMJulUkOSjlOLrV2JDG/PcscFrJgZaICsItEuOGZ316FRRJLnsctjBsL4A7nY6exg7ZtpmUIkCO53jprJp5dR5Oe06xKnKi0EhTJVU+NRwR2ebcNbKoYW76+xNS3mX9XCwiK9mlS6dsifTg7RZG0YTEWL6UEJ8C+xF9uHeucEXdztEPldbNMadp6l4Rtus19ST2h7Jzrxj1BevE6NFk71D1lwOWs608Vnbbic5lm9id2oF2057bW80qyLx3ty1qb4247TBpQlf0lbhQFExiDiVeuwkN0Xdw9iJuO4nEs3Evqh4Incdcls39n39oEgeGmnsYZE3PITv9jFM3eiobJn9c9R1jP6cmuupZmE/ZgBNOreCMARxOI943E/Tq40Tt5/WYIngWDLvVt91Q7J8x6CRmZ34ALWzgkEI1vv7eVGx9HuxSVmZPgko+ifRXB4qeYNumrsDm/5cXLEDhQwM1/75HVelcJkeIDQkwhYoZZtW0YON8lvhh1UIn/c5yrzota2tI6Ijv1iUWcZtFZASlSHGC5E49t/bZ7VUMnRhBhMxbbZc/vm0hqsrGy8iUC9UtuQsiuGkyfypd0ty4fBLEbkznlpu2IMlLOe6283RQGO2szPlH2qOQ4OLZ1t9pPtfBiMiDaOSNsxPJ9Wli932hXDVQ2VhzO8D5eX5S+n/ihQyQkid8A1IEDJMgqZI9IhnGHNLO4/aFosC+BGSDfB5lyEoLPNsc4pPKrx0D4iYAIPP3bmpIiNHbAPPWd0tnto9TR5ZkoXST0VakUwezUwP2sryhgqyFM3fxTfpYwAUkt9JM1fVD8spLYKWdNq/zQtBnD4avuY3u0FnxUexAzFPU44WmuVvQUC8KFW+DdItdQ+a33Z0NHuTQ9/KKDuH7JhvLU20U75wJcMEwX6qxWrMe88QbBUkxlDofhrDJ6qVQ/eWLt7UUBrkHmWTWLRYO0Orhs+9ByKG3RGbcgpk7spWPslDAR1uixxu4IM/q9pxVXbTbUUeFY7LmwBwU85rOxXD6v12yx3kpSdo4LZcRcEfVFJnr6O22wDicAl8/91MBUy++jxOBWauXi7zG7g+5CW5Cxj0/3Zi318rkH571GKCOC4mXDn8QozbQjoD7VC9y0S9nq65fZ0qctCdVmQ7Kl0U5gs+iorUSCxeNpQv4d5/LmgWlWF0Yt5Mavt+/VMx7JL+R87YyfzniemyMuU9rx6mcTRajhQf1Fjo/luzeuW/s/JX2RfL8Bj30G3SpcTv/0XUEsHCNv0qnKYCQAAoQkAAFBLAwQUAAgICABOtMRAAAAAAAAAAAAAAAAAKgAAADBhY2UyM2YzMjQxMjdhNGZjZjY2NmE2NDg1OTg3MWJkXGdyw7xuLnBuZwHBCD73iVBORw0KGgoAAAANSUhEUgAAAKEAAABWCAYAAACnxvYXAAAIiElEQVR42u1dfWhWVRzebPOrsdTp1CxLczLFr8SWmYmUDJE+xEz6EAkRybAo+6CmSSUmERIxxExNRoiYiomZhYSJLpO0UtskQ1NaLm1+pbbSufU78bxyOZ37sfe9773nnPv744Hau13PPed5z8fv95znl9PS0pLDiBY575cXcD84+oM7IXICXkf4lbCd8CQTkkkYBwnLCS0OXCJ8RBhHaMMktG/A3yS8QZhJmEAYQugSc5sKCTMIOwjNEiHFDLmIMIBJaA8J35IGOYWLhEOELwgrQdTpYqmMuH19Ca8Tjija+C1hNqErk9BsEpa6kFDGVcK0GNuZSxhNWE44J7XtH8JGwiRCOyahmUTcE4CEszVqbwfCo4QthCtSOxsIlYQyJqEZ5Msj3E/Y60PAeRq/Qw/Ci4QDinaL7UQFoTeTUL+BG0ZYTKgPMAO+Y9h7vUs4qdhKbBPbCVPDPbYQT8wYcwjfK4h2mPCj4ucfiL2YwTP8WkKj9E4XCFWmhXtMJl57j73TGcJSwihs+idKn6+xISZH79CZ8BShWhHuOU5YKA5nTMLsnCKXEc5KnS6IuJkwWT5F0v+3JfyB3xOkbWvhNqSEsIBwTDHr70G4p4hJmH4H9yHMJ/ys6GCxBD9HKPZ5RiUCxB0sjwaIL+pYxD/PS331N2EDVoZ8JmFmmYUT4lBBGNyK5/UTz0xYirAjYSqC8k1SH54ivEcYwST8f3J/PGE1cqrOTvsLe7nxUWc2LCFkL8IrhBrFalKDz3olloT08oMIbxPqpM5pxkw4I2mzWJb7ewRmwVNSfzdh1hSzZ0frSSj2cNjL7VN8M48gp9qXSZPVMcjH/nAD9ovOMfiTsAr7y1xrSChOrTi9biJcll76LE69o02M31lAyCKcoFVpzmM4efdvxeHoMa1ISA0aSVhCOK0Iq2xBvK89k0EbQg5AjPG4gpC7EZvs7PH392ArNT1WEoqcpsjLEn5yCauIDEcPHnStydgG2ZcqZGPkcM86woNyuAdqoNQe8+FISShyl5Csf4mcprPR9cjpDuMBNvNejMfYnkReezhUQOckKVp5Vkno821pRI5T5DrzeDCtIWRvKHgOKVa5OhcR8d2hkxD7hkWQpMthlZ2Q1HfiQbOekKn9foOPYkkcPG/PmIQ+J6ijkMn348FJJBlF5ONpHyKeVAkqMo0lnccmdAyHVRjEgRcCaDiPy0Jcv6h6pUN94oyqbyU8HmVUnWEECfcHvNMjIibdlSR05BdrFX94AFLzntzhDBflt8yZ0wjHbcK+sQIK8HudqqfUAya7KC2uHb25oxk+JLzDQbD+rVklUw9YESQIyWBkLXeMNItvOoYR6syxHKfJIiYhEyKu3CyvPAlxYKhAqnAO9r1lhBvjFsUivbVNkf7SRu3MJAxvsJ9xCRFcQbyqGmnFxdA2to+4fV7pr4OEl+NSOzMJwxvkrkigt+huBeKR/rI+LpuE/dcnAQg4V7P01ySYIF1WZKhWRqF2ZhKG61Swy1QrEGpbN8KzsIlzy9WXMAnN9qJZZsqM4nMZzGjVUlK8aL5R/NxIKxBciy2HxfAlG/SbSfGiuVP6/FMbYnIwCJgOE/ZmU5XsNnrRTFGFWhxhECutQBxWKYdNu9NjSwcH8aJ5FRv8QsujAblYAZa29ovKJMy+F02PJJiQK7YsU0C8K7re82YvmuQQ0u/wJlaaPuxF4+1FcwOTKbT+HoyVpF7R39tx2Cm0noQ+gVj2ookuoD8BK0yjotLU6ihWHp28aM5BY8deNPEQshMC3jsVe/A6rFSDWvnMntqQ0CM57/Si6cBk0IaQfpWmxArWzecZtxJ+C3IFOC6ZUurSFHvR6B/uGYMVSrYevowVbbKq0hT97DX83i+Em9iLhhHG2HaEnGyr4kJcA1a6kQ7yOv3Fa71mTvaiYaQz5j2xkh10qTS1RPHzvW4n7kwaUuriYcdeNMki5HCXSlMq7FAJc7PhRVPCg5NIMubjspafiPgzuY5MGF401il9GRmR8ZEAM+JaZ+zRz4vGzeGdvWgYbrzZHPBOz4rUxOXmRVOT5NtfjLQJ2F0hlJC9afYjNizEEwOdDgwPsBcNIwQSTnIQbD5y0OPgTXO9nw3IAnYEYMTtRSPqvn1tkxeNDaVk2YHBfBJ+pXBZmAOR5yikFfNibiMf7Cwn4cwAJ7QmJNmrop45IRK4iFtz5UkW6touTWoMQETfBHuW2jc/DLkUk1B/In7sQ8ATcVUboH/3NmSYjqYrl2IS6ks8Ly8XOWY1WIP2+smlNuJ92jEJ9SdfGaoNNARYgkUZ1TKT5VJMQn0GLYi/34cKedl9BrxbL7TfTS5VIdcDYRJGNzgFcIkP5HRK/z1Uuk7wkIHv7JbHv4p+EP1RwCTMcuAZpQlWuZQ83QClT77L3/+AAXvCErnUOoWi6QJCTeNMC9Tr3umlPsWfA7nf0+88T5hl2QGsCO+/26V010JVHTkmYUyda/vVgrC+rIkmoa3LjGnblkSS0PYNt0kHuESRMEmhBw1DWbU6ipU5CJs8QroF9ZsgbJ4atbon2+mosbgIlch0lMHpzUgvsGXj5Uo4MW8cIWMtVaGtoxMjNkIOJCxy8Yqshvq+U8BniTqCd2WNhAG87RIv1jScjBmXqqDPXkIlhaGhktCjWE0sLp+MSAiZVqkKRwTkd3HjLiMS6ux3zIickLcQ5rlUUtifsvyDR43zs2OEm1tFwgDO79eK1fDgJJKMzlIVZ1xK+ariwMWeJMykWA0j0YT0mrBkfCcfbFIPMbYaEEM7QhYjxuhFxF3OgHgOkt2qzaYoMTCEO5aRBhHXB7hi8XnKIk78wVzHsXsNwi7sqspIl4BdFEooN6z/LxQkTizsqsoIkYSzFKE7Yay1D0brSyCmmAbZWQF3HCNsEk6ECGIMXCZ8D7H/Aiq8x8X+aphrAAAAAElFTkSuQmCCUEsHCMSpu6LGCAAAwQgAAFBLAwQUAAgICABOtMRAAAAAAAAAAAAAAAAAKAAAAGRhYzljOGI5OWQwMTUwODBlM2RkNjBiYWE1MjUxNTZlXHJvdC5wbmclVglUklkb/sAvxV1q3DeSRA0Tl5xcR0xzKdRyylzIJUWb0kJNk8mFFrdjKoYWOppaTsuUYpprqP2iqSDajJNmuQwJ+heNCpSC64/959xzz73P+5z3ufdd7rn5x/29VZX0lAAAUPX18QwEAAhFtk6Eycvm9TffIgBAEe/r6X4y7f2/0xmPx/m6rxLtI46NdXTgHQ0tWh2JyJx4dMzgeTjcr1U+wdNHpSQPvhdukt1HQe3lVqgoau+1MnlN9NjXG+qZp7wwRTEds3hvicY1ixImVCdK4nqme8QuA/bnFqQbQotlhs6q41c+aXE2YxqpNlIpljY6Wao8GK12c4MCnbrwP4P1Rh5d6Z0nxtFirwE6lgg3xe0veYPkZm5Zoy1e3yvUGrAC6zaQH633W8LUcw25eFPzXGZOowOuKQ2AioxNNMaYt5fjHcLzhxSiwtoxwy0UABpYMPSu0fyZ4lW0jWN11lZwu82t5kYZrMz6Qrz0roLuWWHjeI+OX1Q7HRIDQJ70x5xtP/BMPXe/jcVVC+fkS3wBgd5/Xw7mY4dCin+p1+TyiQ93lz6Iim53xQnlAA1K6PGHfNJtP26wKeoRc6XRZVjM3EFxXgu+q0kfM66wvTa2Gq2mDFASLgDzOWDe3Nu0/IHYtJtKlT4XOTZv1ABgnRZVUfpH9JlupSddTpMJ4dpk8mVlFmNKe/Le+j4OzYCdoSnulNHsUT+L8usLpeBpO1ScKJ+uOZ8CgfmE4bz4IbdzxfG+CeETtS7UwJGHuA2MkXdqhVFkO1gnclt7KnqxHinubJ1/Ip30kHRHDDlG7Nm8DqgwyQe3HrlZLRBdxwnhExWVAvtUytK3yMxMXYLbW4ziK2s1H1NocnLgcquVuJPVx/1USM/oEH6dKMs8AaztQxQicCxn3I+8KlRLQXMqb4alWga3XM8RaemQySqjNJVhQWj5pRNVCaSXTz/50Ja05WsC5AIVWa8YDRyS8UYknOSMX7grj8We1xcOvPTkeUqKvkE1KCNk/OzchxDjHONgOyzWsheLzXy/+1ZSpBCrdgVfZjY3LacOyzvSrkE5I9V6+5R7lwQIw7g/jytgsfJXnQQVxPxvgIYGAIIAJMr8Uv20ppHi7NcVPQRCxRRRldwxoxKQ7axCAsGb//l4YtFNemrm1bv0F5LLM+8kZDiaTH6jdftP0qCwJP3v9tQgQtaMRcTinerIaQBSq1VaHvWLxM8hJH9oPepYsFZsiOx4j/tjDnd/TnMZGJkIryp19gvKzea/vZUiB94MPT6fzedmL59ge3L9HK+lVdjvgLiHvKmGQu45U1n+LOiaJG+Wj0AeBmsx69Ti1Rc4J2Nj7Mxze9eIYbRz/9dEM6dJmPR/1UqTijfGDcw/OUXIRF/X4etSotMsvyRM5mGyulGWStHP9BGIv6/bHprSbuWjS2JxRQvou6ZRnfZykGuhOFR2f5SHAz5/aLIRuRrEMmKbC+ShUA7t1vCjlqD538Pi0O4kpEt5QJZf60UE4rgy64VLQJMjIyzf1zFXlN7eUxnwPFaGFwzRGFttlWmzY03wCH8WnaO6nqgtXcVf7HLH6sy4dzhNUe06/E+dTTKJI206DOv0rm6GBBMK3bH/LabhtS6qBtyUK6OVehTSvyUlBqV/wUjt3dqi1KGHt3cRMtOsGaWrFQdvBHY5oCPeXs6cGRupk2Wjx6a8ojatM7eg2ag+ncE4kvqkBYTU9kT/xe4Pscf8GqMDgk43/iIljudbwaXRkmcpsvvG4ro/MNEltvQLD79BIddGyBv3B9qa1XIwIXYaGjo6taLiO5GMqjZMA0f4lWA0QRhXBUF5o3XXKrOpQ3zkqzaeUX7YD+7YGnvEHmbaBQgUSiYDCMTOgMFUihUgi0qj7d5GEEiOHuVA4VUeu+yVesfOvnNXjBSxOmisqN+7qpLtiSW3UvAll+K+26ycUB4d3luoXAu4Rs0B823qVZ5MoefsX2xX0ctfZRQQXHM2n14syULTd2217VjJI7TLM8jtIBkDQyDOh9mB4ON+3u105Qv/GEmTy2oMBtt6L6acVoJCX+wieF1saptGZu0/9Ikdu/l2XAUCOW+jW1283cAZuHahWHFpaCCPPdcnqxIoVFYlGHXzn6oVtH6zIR1Sd7hzo+h08HfnMUlF/pOUBycrbHRpEy226RyG1Xf4pFpK+uNc0pkC5j5BDhloqcGNPhePvhgWrFnPyr/EDHcN9jwYBvUvdO0CdbptLMSdWtn2XPoBfSF9wWuzMApfPHvliORM+99OyrA3xu7lhouqYUyFMhpD+x7bO5+ux1tn3K7ezrXuf68EexPxXfsng/jyiRa7Z58rJzS3742/i5vk3/GCQNYOoZDM08npLDYXZ2ruzXzd2CB63pONCT4GgYB8O663I10QzJ7xHatdJgjMEICcja5hwyjpTNbn3SW2BknXUvZokGNxWivLR+vi+7I+/KoIw8Zhg1YlqeMKJiYIoAoyOZ1kLWyZiuxxG6Wm7T+GBaz6ooOKPC3ifIw4fitS/zplGHbCO8ONu51hp1L4gwa5QHFQYOiBZNd9HBo/ggU6++cqWDPD3jKo51wVCNZoUWxI6LnPjN+F0bp6FghgU7v0afI53pLYSBqL8+d1iW+o7bjZKvLFeCAj2NQV7RwvJRjAqRlesj0o4iyfbEfiNDWA8zttcE5fj+QUr65eugyDAS20y2qFU2+b4D1uA5OztviL0V+ZChLJDVs7Sw5nhSqLrnHrTQK/tJsMyPpWQkxOc/lygZTSZGaMtNpT4K0s81AzrMxmKpMin+tS25gPiXEd0GAsIEv30XbXR3Dj+j4e7idhiwl+3fc3i/lc2PJQ3tDjJGR0msOXYTtUy9Msdnnph15PCKRGq3Q025Q7SWTwP9bXk85ntn6XbE86Fh28Z6U1vm+JU4zZL+4CQbLsTZyv+ydBerROlzonZRGG+qeWdSLEzPAcr7UoYCNrICYwuPJKuUFDHy/+XclVtHLnmcpT8yS+z52E6ZWQDQDICcB5zY+FoplPdYtjj8/AAubHIqjo2Tl9w+qw7oFHu8Ca7eu2B0ap8WpLakmJ45v89KOZnD9eL2w44neCr08Ntxp5f/f0+o/bG0tRRWTAmpg47upIFZw8dtzJ8Bd/zVYKcNZWhq1YwUlmeFkFHfQQ4dXpnqyy7kOKMKAqV3NWsLs4uSNAJEiqvZMtVwPyclhRfbaDwnxGWx2eltLhqgFUQKSZaebqpiOfUv9plGj3dvTfN9uL6JR9twDfI/6eDYcjr/8PUEsHCDqVJK+RCQAAlQkAAFBLAwQUAAgICABOtMRAAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgICABOtMRAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVa627byBX+nX2KAbEoGiCS5z5kImXRBF0ggDe7gNNiURgLDMmhxDVFaknKlne3D9Cn6Iv0X9+kT9IzM6REyk5i1/bC9QqRh5w5M2fO953LkMrsq+2qQOembvKqnAdkigNkyqRK83IxDzZtNgmDr15/MVuYamHiWqOsqle6nQfcSubpPMgolQSH4SQUBk84ofEkUkRNVKq5ZIkMVUQDhLZN/rKs3uuVadY6MSfJ0qz0cZXo1iletu365dHRxcXFtFc1rerF0WIRT7dNGiDYZtnMg+7iJSw3mnTBnDjFmBx9/82xX36Sl02ry8QEyJqwyV9/8Wx2kZdpdYEu8rRdgsGYkgAtTb5YglEqBKOOrNQaEFmbpM3PTQNzB7fO6Ha1DpyYLu34M3+Fip09AUrz8zw19TzAU6oIw1RyzqWkOJIBqurclG0nSzqdR/1qs/PcXPhl7ZXTyAPUVlURa7si+vVXRDHF6IVtiG8oNFL6Iez7MPMN9Q33jfAy3E/nXpR7Ge5lOAvQed7kcWGAYV00AGFeZjXQt7tv2svCuP10HXvryQuwqcl/BmGGAVKPuUUbv7BfCV+OO6wHRpKB1rbe3FJprxI0iIHOCHSqyOmkobqik97JUtYrpUpdtZOKj9gp7wZvr1SwgaGgy/1z3ysq2afs9FjvNfr766AV+KYKJb+Fwk+Q+RmNs6M+WGZdfKBmaWU7/2nNqrERwyIkIuv4BAmIDqnAzwUiETSKIogHRATiAm5JiKRtFWIKBjhiKERWjjDkwkOE8Icrt5hEAhazvQqiEhFQxJFgiLio4ghiCbnIhCilDCSEQAImWfWE2iWYRFzCHQsRhz3aoFQEBBlMhHtQTxEjiNnJRCEqkbTrEW6DXYZ267AkRRIjSeyCENcQ0z6eQT5EzFojO7jycr1pRxAlq7S/bKv1jguQhoy0z3s+Q43S4rNZoWNTQKk4sUwidK4LGxJOUVaVLepJDH3fotbrZZ40J6ZtYVaDftTn+li3Zvs1SDe9biebVGXzXV21b6tisyobhJKqwLs9VwUZXNPdruGGDQb4cEAMBuTgWl2rt4IRtGkM6K/qphfXafrOSuzDFJD8tiwu39RGn62rfGzG7MhVnZnZJEWe5rr8Kzir1WJxQfsiZBNWX4QkZv1Oqjo9uWzAhdH2b6auIMsQMY2GH4iTSz/EGBsNhTY1JdpGH4/Gk0KY9LEh6XWb8x1Hemv25i5qV/P3N++aN1Wx73IIvNXrdlO7EwRsorZm/alcFMZ5icu4UJ6Ts7jannj3YH6tD5druMN+B/HCIY8gO1AB8Cy6Nvatk7Fb20lhJ4OdBO79LU9348SeQxZdG/vWSYED+611ppLeTIJ7NXnjchoOusjp85V1f1vsN2XeHvc3bZ6cdaYSP+H9ZhWbgRPBem/rqmn+nC76ZDhWRB5U0ezowB9nZ6YuTdG5P9C+qTaNj+b95lKT5CvYju/vsNOW17/Apnxvaha16Y0p3DHOI+tG8dCvr3S7pb6uq9W78vwDOI0fHIRSv8lZk9T52joniqFinJm9+6V5o6HgpMN5NlzBisQWFoCstXABNJt2WdXuoAb5B1obpYVZwbEMtc4PwdjFHvo3eZESd+bLcth46coYE2EaY4E1zdI4CjOIY0VESI1gPAxjddrayYWZrstF0KXfNzo5W9TVpkwPDISk0Oq6/c5GECodkc7jtvNgwqYUnPbSXUHXz/6k7icB7aiKf4SsvCvcfsuDlWH8I3GCdLFe6sF6hb409YgYt9w3VTqmK8u3Jh37CPiVR/AGWNIrWIaRUClhOqIJZibhgGBGEpmEBqcsy07jQm/uDCSYSa4kUOjHUxHiwYf8DyCDo6W58zJXFDppg/7zj3+ifRg9PirYIRUCfFqySELEa2VoplL7HGc0UdiEXKWnENab8s5c4KkSIy48FWQayREV4t64SB+eC10CwF5xa9Y+Ma+N8Tm97QocWsNyrj4O0tvNCeOHhCmqQo1jEYdKM0lkknBqWJQpAFJxI04XpojvgS+mxicM7hij03FIRezeCNNPgzBxSBjWiaEsY5QTqjTPkkxKqSUPRRQqEqeni/rf/7p7hF3HzKXFCKJ7+KH3RljyNAiTh4SlOomSMI6iFPIRDrFhaSpxrLWggghpTuGJ4R4CjI/5orLnizwQX/H/I18xPOgbXe6s1I4t0Lkxh4fWezod4c8Y/W2WNaa1JCofYgLzT2HSP/8gV7pvUrYPbU4ekc0Md0Zz9bBGx4/I6J5oLh/W5vQR2cww/2282zwio7l7X2KNZnc2eruuTWN/aun3/MFsW0iDMDAP/vDTpmpfnU3SHMStkC5Qs6kzOCs0qMpQu4RqNBpdAnh1sokNeuknO4VjaFvQEIzV/YYw3uRZpXtX2Jg6z/bv1dybIdy9JLa14rB4dg/GeHzC8RVTTKNxxRwWzM8zQkeMfIne/7F8dfZ8/kt5miyrqjHo7O+nSVq1iP7wSzk5Q1/eHH36+NDPm2P9wXz/KVK69/U34kRNMR8+v3HhKJFTru5ACbuGkvL5nNwGe/aEsMfXxwOd0ugAZf/WiI2eqTm7Hfr8OvQn5PmclrchgP8eCGAj7++ORhM+paNucTsCxFUCXmCA/4db4S+ePP4Af3gN+uyAFTio3gp+eQB/6dM/sDAhr4AHGw/k+W2okL8DKsTI40l4L5GgrkQCa4GE1maj/vpWTKgnz4ScklH2F2IXFSMqPh4VR8MfUdzPmt1/0nn9X1BLBwhTLbhiBwgAAEEkAABQSwECFAAUAAgICABNtMRAiOzDsBnFAAAg1QAALAAAAAAAAAAAAAAAAAAAAAAAMzU4ZGIwNTBhMmZkYjk4ZjAwNTcxNTgyZTUzNDg4YjdcdGFiZWxsZS5wbmdQSwECFAAUAAgICABNtMRA4AqUVDkXAAA2GAAAKQAAAAAAAAAAAAAAAABzxQAAMzg5NTdkMTNhOTJjMDNlYzQ0ODhmMWM2YzhlMGQzZmZcYmxhdS5wbmdQSwECFAAUAAgICABNtMRArFsVl9QAAADmAAAAKgAAAAAAAAAAAAAAAAAD3QAANWIwNTYzOTZkZWNhN2UyZjdkM2M2OGVhMTcwZTg0N2RcYnJhdW4ucG5nUEsBAhQAFAAICAgATbTEQNv0qnKYCQAAoQkAACkAAAAAAAAAAAAAAAAAL94AADcyNzhhMGI1Yjg3YTM2MTZjYzQyZTM5Zjc2MDA3NGU1XGdlbGIucG5nUEsBAhQAFAAICAgATrTEQMSpu6LGCAAAwQgAACoAAAAAAAAAAAAAAAAAHugAADBhY2UyM2YzMjQxMjdhNGZjZjY2NmE2NDg1OTg3MWJkXGdyw7xuLnBuZ1BLAQIUABQACAgIAE60xEA6lSSvkQkAAJUJAAAoAAAAAAAAAAAAAAAAADzxAABkYWM5YzhiOTlkMDE1MDgwZTNkZDYwYmFhNTI1MTU2ZVxyb3QucG5nUEsBAhQAFAAICAgATrTEQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAI/sAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICABOtMRAUy24YgcIAABBJAAADAAAAAAAAAAAAAAAAACA+wAAZ2VvZ2VicmEueG1sUEsFBgAAAAAIAAgAjAIAAMEDAQAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /></div>
+
<div align="center"><ggb_applet width="1005" height="631"  version="4.0" ggbBase64="UEsDBBQACAgIADm1xEAAAAAAAAAAAAAAAAAsAAAAMzU4ZGIwNTBhMmZkYjk4ZjAwNTcxNTgyZTUzNDg4YjdcdGFiZWxsZS5wbmekuwVUW1vbLQzBPbgUCS7FixcJ7sWlOKEUtwLFJWjwQosUh7a4e3EJUKG4Q9Hi7g4/7ZG353zv/417xx0jY2dl7bVXlj7PnHM9O0L9iTwOJgUmAgICjqKCjCYCAhIMAQGxAB31Pgc5+OsQAkIggqKMpLbn9PZ3FH3ip3do+znKQGTEDjnZjrLaJkOecceJlzHuxj47u7VNTeOOlVhR6pKN75sWr/pbeoIadpu2iHeNWufXLm6yzuIqBt66Pl/NHJh99AiAAO2GVOqzk0T9+pq6O0Dt4sb+4/N6glAexIv9129kur/vSP/37KMAJB5+fmITE5P94+Nn/6k1KfJNW9tdG1pufb1gdExMzrt3Xb/9J3GhQa3tjQ/oS6vY6MhIFxQJbf94Q0s3j00rD5uEwwDeqj483ej+UEVV1eVoVfU0nGA0kviheq4Mxmlo5NhCR/BQmfHj09CEscuTLXMbm4gmj70qiTcF1OK+sM5QLIud6doE67138nHq7xXwS0xaDAh23F+8kKqEdFe8WFHadWLTdF3tk7w4XGEcmfM6Wu3o73/Cu2NcYYZYpFt6OQ89//GZsKzzhj2RTSeh661G/2yDCxIJCQk6Hp6VFYtkLI1E7IuVL5X02uxa+U9k51v9pvCVkqJIub4wn7q4uGxjMyppahIoJbFHVFsNKOW2sLKysugUET3JEueIOM3Lz//KNZcl6pXwOC3y2Vp/RsHT6rxn000+Z47a5SbGvDvf651ooAogAhg29BMQhkwn/Sv5MwOZ7mfOzzTvH0nk3B/QlHhoA0iwoUms19VD4lyWgeCvAtJ/PPHzQS982EahYoNwKZEtkU7wfpcZ9vQJJXmA3We39x/yPqlZF9psKAyAgBgygHjwM/T7K+192oY5f63hvoKCUTBRKCzE1WKoqogY+Tuq9eNLYKb/Aek7/P1tFl2PGskpXgHrpgU6SrHWPTT6Pxun8Gej/efhoE8rROPudZJeLrEzz3efGvkRKv9sEhmM3AY8id9nrYvfjUKovSFEbmjit0FKv3hkhvZchzC7lDZ7Cb7csEAiDbp1RUPaK4P01misT9RxTH8pfijikRF2w6mBrkoHdH3kQh3bUOMID3exiRqa2e34LAEFa3eGiGT1Vgo7SMSMXaVGexk6LuJAC6K1TN9/8Fw+vPYnm6M/SjmRrM80XCTLQGdVa9NGgcVnnjm7uBjWOJ2Z+/obhH5LNo3KOvd6AIvAb/VsruNAPT6/TqcvjoVwdEsy0yATwtgSWM6Fd7pmKQDH/CjaZB7o+Rnv7keQBw9JozV7lDSfmU/qtRQAc3Q70v+qGUMm1FdTlr7rhJtEdTM6tbvvlRoQ9EkZK9WAUb1+TWq7eS08UMbGMfM9lOyEcuK0pLvPf2ewKmEj3AVf3WZY0ciXmP7zgboxSG55p1RaX6JImGIaPatn049YbsO2az8NJoM39SMUrJ30mgYiDbewX0FwY03GyxN529uHMO1dO+g46mi0j53ILqMNgJmX75sNPKupIM4+dfG1R1tao8JrJRfXRIPYv3rYj0OoDj8/cu2/GnCWXA/1IjVekP1jGRWkgq8HY6W7BttMENGT3DX8RjGQn6XZ48PuDmvi3g8me/KUI0ambUhWlAVtcjRZ7C/QDLV04bHQF0hrscT2VKstdRramMgn8wLnv6fHuHzbyjW4oLAerGKzh+P5uQM0FAkD04p7zVSOKKwPl80OyCgYdD34WK1QXVvOFGqcjrFOUQGFbJ4DMD4oWSx4zS9FwwBpLNVNPnmuyuVBNM3MuOy3XBrmSXfug0nXBqVRvWE0iNB1WUlv56lOTqkDrqGh6/q6NQHMFCHX5a2I9WBOnC+Nv2kXfDr6UT8iOuMfC/8NLvA1/sYZZlkcTcfnCw7Au3fA80Nc6rmm4McecO8fAL0s9GdPv6/XEVb7jIXEq2Nb+p8Th9ND4dF3SLDCShjui97qx3t3MwPN9PgZKXKgvNDljK+SKg+52rV7EUjE9My6HMibpIH79mh5JI9C4sMoQkS0Ks77HsIJYcIUazf03DkT6Nd1zx/EpmcFZ9Lh8mPIMKqyZFLPxUo/OFswgPlG0umCOFVsQuS6a37oHUdpO4XOl0W9LuUbm/G2AfAQdZTHQly6evR9BYCZNK1MvmdmggKnrPsbaSm4ylSL68qgVbmluYzeTEUHDfk29Ejd9Yip5c32We0s8DUA+BX3EqmJWs43+ZQApoQLHxWCI/v4pi6Ln2DKPwuy9Rv8oQpiol/NYJ7NEm3vYi4HprwKBNf3OjfedSjiZS2/lWd5hnXdetJYnYA4hJe8+jhbulKKxTAASJL+GIpSy2+ec2buFeL+qCb9BSUnRuHb21XW2Ltp4phupHdmH0XIvDhRNBTvkOEs71ubYqK++rzLTRVBVvUbzfBDqRcj7qJSROJZxZnLfBtNEUThFrpJ1rhBQh2QwsCI0rR0MSxS8amcI1beMFrfB6cfGcLZjdWPnMuw7GNN1jjBxkItvcli8I4jb54BmPiYXOGoMezhkUGERR5TEm5jSXPMzC0yJJaZHxFP4ESuvIiCRb8Qx9uhIViweDO3hhF6zghK2m1B3ipvTgwYDw2XB4nSoWIURnp9YYQW9IGjZWw/iRkZzpimLxdJGqcvj6f6406IaW91aHsRwiQb2hzYUd/whMoWPtHfXxAnqeEIqqJJfpOmIx2K+HiRKCvojZNofyIRbHNwdDw4J4IHuxa5oNhv0hnHYX2yXq5rBY83K2//xd0AmY7hdYvUacXlCdNc9/trJOD80kZHIdlTHbzUxiWZ0h4jSncsuWepkHEvRQpYxxPnqWv6GnjEq9RB4pE4idCrcMfPsH0ZeE5rhQD/L/N+ILG6GNlj7ZDPSS2ddD9F7HWezhGFL5gpHa1Il5M3RV5QYkp5sDdcYpoQyLa8h55b88vVVIeX6XqNWtcDAlC9O/3cxQAHToEFOVbo7wAo5o6OnLoYRJyrgYxnUtmwtbf4sC/Y8HpPfzeSHl3CtQYRJmDRtx7oGiJMQasUL7UZR8a9wG69c3CUKEyEYvB6ncGdw5qkNCxhxIlOSOQpMZRlRl36R711dHxT+eJo4gOh1gKaxlG+8Gyr8GHVCbAcPG5AISKgGacYTS8o25hMbmV1yUiBPbcNAJdIiut1ysDs0pwnWGUMgxxoBZwz50lpZJ1pokKC8unL+stuFpW88PpEL7CdJNw/kObG4V4jwG3PXXYVZxMWXlPc+zwej+csiuAFmz5HY1yByyXhsmdafKkuJJIR861EIWDtZ0uvUt2w0nzcpOrDcIYqzKm0uUwpx1FKzfS3SO1FjyipNTBebQanf8CQmcp3RSh74hQmx3isXjTE3SdKHTiITgM4eAjuuwykwCkoTMvVX0HUd+4h3p0/R0cEaHhBG7wvnvW5sURKXZKwqHuCViX2w5ykMLUdcpTmUHO3U8aJ4/Xxb3QpO6BYgs7eOwPnhYW11rR2P6ozgh918JwnNWkkksAudYk1PI4lRWMU5CGNsPbkmcoGU1V9dF0WWwnUJunAlDgfnx9U1x/fC7JheA9+NcUacQzrYN79CuYrnQRIaLPF8qJEtecdqqW47+P7PmN+jOIY+gZKtuWPs5anfSsRaI0X/lZefNbwlzdYklDJf0WwhtiLUjpYAcM/DtEsmPVDHG/D1pjiSOIEvotPcCZoI64Hx/cR2jvQrxM5RHIi1S+kXz2WUXAzeo8OP35vHTKXEozoXmpmUkjuzSWMsqZ+UEAHrM6yWaJfcHWlP3Wch8U8mJ8omrLgaf54Ej5wElTxoIUwPDMcH8aGDgcQp+Y8X0lgsTOPWVoJN7u8RdtXUZbn1ebyooJNX5Rq5K3pGvkSxqRog4ZuGF7eDWOPB2EcH521FyXjo1+izrJwAFW307Kvnji99zNip3EjMeytkSHvwB5fubQoDffU953eNxOVECCld4B/rmrlKeLyRGa+g3MBhvr6VOYcpwiRH9amB7XML4oTsCLxfL7CdeSwPg5AqBS45LwmPGM8B2ndO5O+KQZ6gR+Mu/ZZgXMrJ+ZFdpG87v496Tdqi8WdhhzGICY6jhXG/r63sVMSd9FZ3RRD+WIGegI3+0QjFOsVh6KUNx+8mhXxYZ+HJJ1TTalXSt1Bb2xDngfnQVa+JOq3mpHkubNGBMlNA/sCwF2Zjyo3jsUUDrQLWED+B21U15RnL7GlxZQRRZZEFawf4RWXef8cNpkpSj1TU1NRtacdrQcy24dIw9ouEZhQ9BupuoK2HiT/eBpuopdYViQnMigdQG85Du41R7LrVnPhj5EI+Oh+vgiGaCnSgwR40XlYzus5bUajU0kpArtBFInKXSJtCFhNeWTNHca3DVay/iecGz7A4Mx2L+l6PLB9+Odw6uWxcP8neGfg/V3HCjbQqUtrGVn901SuSyYgBpyye7EpuaHWJ9JTSi+47Lk/UfEolpbHfBcWcQDBx83ZYHS4j3Hv1AWH+cliLa/U0Ud9nzGtBL2VD+hwuEKAEYUdsuERV8sMlyuxbC1udaVpkJ5JKzMQio4sstdbUgWIrkWX0UGFhIZlqFfbPiUSIDEzyUO8LPcJBmvACu9hTYoeFNbu01Bf9xgbWbUAI5H72RWSUOiHZeUzUFn6FJbE2EhwkjqZriWTmZUnIJfIM0J2GIzthTqx4xevhpzbaBZH/ZVrUVe9KH3QxV9tQegDbx9ObbaOg+hqpnMYUcTP3SKc+MYTb3bmEQaSw1hOniO6xde6FP8vxOWQnMN4BuCIFpwnSq5CTWhJc+Su0TllFaP+69ECiNpOhBemTR0XGtCocHjNLAtikkXrcEkSo9DjCIN03xblypaYW+YiqU4VJ9ccdnyqoTDAM4nQQvQigpEXKqjC5F7VN9zlvfebDhjRaj5Y7fF1IzwzRqo8FuHqoBG8eUEMq3op13oUVl8u0dxF8IouLZixl46XDzjnD0VHj/KJSx3Vl0FGax+YoZHMGYLdxekdHQ2LwZStcNrX5S6XKCcwUaLiusfbyULyPxDCsmhcNaDop6RnHe3qIT1MUY8VKXgJOhf21rD2Ap1lehijUBXjuWZwD0+hcR7Azu6sD9e9ZQxAVywYeauzh1HQXNXrrOzYSAu8hR9f17kAB7NjwZMHrg8P2j6g8r8mGCT3w3fsiEyrvHdv5ND9gAM01Mgba4bTd8+35it/5DI/w0Pf929Ala4dNc9myp7dpxI65tNMwJu4d3bw9C/FFq95cipJ+GQpKcjq4fa9Zp69bKs8R8hLHgp9ds0XrsKppGRxXUsMVyNf4TeOi+OHTw4tVG9Vda4YJz1H5BPWJBTF3zPRI9mwYiiowOR9r02JqfYxuZLHJFmx/NAtLyHHeYb7ikrxPxJEQhF4djl8ObnkLW6GJu/YyPbEd8aTnV+8GFO7cvoqvOYydTQjsmEIXfeyIV+tmwhvtWRdjxPBmwC74J7aP/TfM0W7lN3Kna6Q9nyIVH7meD3djGl//DVXY35F6JbmICs50PPw0Hw7Yxa3rkrY8bZzkNwFdYCxkeHWB3DQH0Rh/Zx5N9gdLWc+dm0JuhT3/hG9mV4n4FJHzqInJx89wiX0aEjROtsJnf7mMsV5nzz9bnmTBsBTHwgjCmkwhq++BBxuwRRKbh4mZfowHu5jlX/0XMQrjyrmbrJwuSh+hFytSeYxiFRO9ANFEUlju/c828o5XR9fFnMdzM2GXKx5uvREE3HFAatLezCkcZDidaxoWLGMaSObJah1UozsHVVR5LIG9csPJWZ0/pPFnzkj9Sez3xgzau/wE7dR+smC2KSlyix6GwQKUvduCJHH+A+7iuwZtQuMdPyHE/Wk0WpS3TCpP9uwnQERbQAHxCZZ6UHTmygaeb6y2tdCT1a+Zke7+7tQ8q/grV+6tNDvoim7whluUqMGJErPX6UO5NlR77dyU7nDvRJKjUPv54KxSZPFJoc5ALlV3ZFM18g/JtBp1q8NB7bo6W2GGaZHNBBzSQJMLeklLnc+N7mmspiBHfGqGr4payISlAExeTv0hqCumDFav/Od4dG/oclP99rkJx24XnRdwevb05RKX460cLQNHvIxXsF7SQe0VEz0Wd5/VVXwnHY3mHH6XVfz132ck8DeaTkWWybqh41U3L4n/A2yj5e7c1wKWCGGyoPhXZGGdxdUDciQMkR8BVx/jOTEk/n5CsdZIukJo56RFK4WNB7Uz+ZcLna9+m4st7eRBkO7aS6fWMkizz+9EQBaqkVHyUbPeNnffKT+Qvo5eeMWl956q7YHVpvsIsGCqZlhokAOO0saly9+YfoRLd9WTcjejQ6YSIvIXOFtRj/pu5PJuvyiYreKiuu1JuPVNHIiAKLEB7neXdiOxVg34pZQeRSXmCmMzYbXnf4t32XiMSCedZiSFKARCk2hiGpov2po2CN1q+aV7VC5Ki+zwZ/EM4o56c1actCfFTR9dSkAYurc+WGvUvSw7lsFMMQRbb9dTfR0t6T9B+dLYDRbrn3+N08mAM8FIRAr1yB5Y/KChsb3Vf1cMFnMD2fSewOKn9EtXBaWGkiHG2C21wUuGP6Oc0cFq+LPrWzg/kxdGwm7yvYTdDP2I+WJn0OfmSHu/tbtVa7jFD3/klQ8K7CAFlDJgOroFdh7hz+NvCTISEEtiGu2V7WR0vb8Ma6ILJ3YMhLQwnT54K2xPr8fYlKJeNjV0qz4wRFXBQEAeOLMmfp2VVq8A3Ai59QpOeEscyG8uHm5kcLvKjKe4QH1gdmzJQU6l6M1HPe6qWRxjtMk77c/pMT0DCj5AWWJm9yLV8Mz752+2LuSN8E6uJqt9iTJgHliOKW+ga772GG9LM3MtFERLz4JdwFfA0HARBBPWYOH7wNdlbsvnt8MYxivskBC/MYr1HSg7+GjDLQc3cTJSVydw30W/B4oq3v+yHdwovcKnkbaGDAbDA30tnqUh6Q3sRvFscvpr7OeMbdH+ijERPs7ObufaLIP1Nz1P20keUwtAxJQ5DnL9dsiGIEJCrq4529TNiCPqLX2NJFVfofiuazse6uYNlDbxYrJe8qJDNNnLVzrHogK+wkLUL24Hvh6pU0Ki4Dh+sZuPchb9nCJbTrdVm5oUU64Ex1e4ymDuc6/fQT3N/FA9BDrJOLtTRQHzvdeTRvYP6VNE6TqyOmFVqVlxG++BDwk+dZ9PJbvvOGFsJQwR3u+8tQ+XZywOs+p/e0aFP1Jnyqop3Pv81NKQ8bYsyWdyRdclEM0PER7MROx4ZUvL41cyloJJ/yW8UtFyj+ej8NpeTaZBPgqoariHPp8abCnzPOr54g5BGDtxYIeMVjR6+YDangzqY53ZCGbbGJggdJFqxqPju85kZbcJrhvgwUVJkxKjJRr7/UM+/rsDhZWh5L9tIHKm7MZIY6ylU/tNyHuL1GOTXqYAHGAg0zrK8k4xYch6wW29E+L8iaEsL/1t781PKV47IM+4lCPVhPPqx4s/4542IrgP7U66T+kuo80f8lwYAYg+a80XBQDfntzZXH443OJiqWjY+zpzkw115sa79NtDCQkpGiqx0k3OchjH12tUlJTq7i0S2wnynB8fHxOQxN0zna/m1tbww6We6sl3hQwPUlHt7CwcNuZ1iHYyeCzIVBRURn8oEyqWHOWbOovCQWgMIyYjEvopQk4qBeo036uqXeYqauoqXmj4jNTa3fmAN4ezEFCxSZr/6Jd9Vq9KwxnilTJoNSwPmmvqcX7BBLAIslvMywjzgMxLdDVKdHHFxAQ2MZiLCbhMPjE9epkYyT8JkdmrNxUQng2jd+OKeL0SyslNy+v1EieKuNIr6Yd19aWTpu/X8rbt5Ut84UUfNbtjHlGkC+MedjJKbx/JV5EsHb9yvb5pdzQ/jlIf+qWv4YN488fYX8OIcNfN/5d9J+P/VX0n4/9vJ2ICtFE9zWmXj79oNzAUP4VIhZoqI4N0cKAO+3NCTr7LbHszdjV7y5GmAISRnjR72v4u+aflSViwxQ10P0qCV0DSoIhQQiSJqkQnc7AWj3nGQlExQ3kpbYnYZM2hZXoWNiBI6fx61oDmnP1F5E6UtUnTvgJhodMv+r5a1H8au314RAn3cq4vdAoFw4VB05BACC3hC/7gyFVC+lthKH5zypfCA1/nzAP9MMgGh8LSwqj+B/ycRWA5+nxouG1cBVvkb6tNMs8PlWARKB8XFnnwRfAMasZ+iNJPCaHPMipsBrgwJTp9rvdbKoGkaXqjNl5FTnZRBt5Ef6/ZWo2RqAWffymD8JykX670gymDlpZe1J+/Ashpt7GxetPqRX1g8Fmc9Qta8ZwQ8DBvLuTFMP13k7HUHCs56oPSlO+mzT9/5jSD8gQX2CCk5qkmB3hOkbtoGu/4uzN/tPkTKJgWNeNRn4JK3IOtUjsY1j4vWX/gRFL+D8a9RA4Qt+C31r+IDJtjRB/ElM6ybgzSs2K40B67wsDX4m6wnX9pvWjF8yOTH+K5v/YlGz3rL6Y1ChpTApf63sAAkSRb72NoBfpvnkaoYEpRKH7YK6GxsbnrFkeQzBFJmCiExNx3Dl3m/3yyTgX2WJEUdPUMCokbPu5/bl3oxX5o3q9cnxgRtgPPgCP4ECAuanIXSgcJPC0cTnXGdQT3j6wVX0zsUN8/U7z1fvAG71FcDReaNbZ2o67lr6PDjWsKn+gF6VrayeN3e98M+YxwIL3VUKZd1qJOiiPCcRDd7VWE64G6iR4A4QVRihE7t+V7fwSODVsvT6iPQwb7z8enTsbe3Yonu4rDWIz9qVabKiRrjsoGvQS1ZW4RwO8NqztJ/ODRd7x7BZ5ds/C/NGkD5iCwH21ovPQUCS7548zU9XEIqt3kZfyhfpl1kS6q4/jk8oQvXcOQ5ULCABDLgKUm4mfhk1UHcSOZxdR1oCAA5rXlDhG1HGNL0meXg5+qmJAzVIKMuWDno8hi8Or3XGn+h9aGuL2LPkoocPbez0rW+3qTqcFaGCyHkfcwEe5vvg+7/GU9MlukYB2Od9TWhrSujL/sc//8+XKNuSvIMJPxsgRA8ctDNt9FNfJs9mlCGJF7bjyl3EwJEQn2Rmyu0UR734D1uYAyV113myopgu50Cl/f3kqbcYOLXBTRJdOuWqxX3Y/ucXylLm32uRTL0rVSWc/+tN+Tcm4PGKnvmKmFwgF97UcZeGZSHyM3/FsXCYINMOY1y10BoV9XLr9FvX0cv1H4Yjnj9fZrwzxiXDh3IKizteaPsv4GTKg2yPUyKOqV6QNXitGSeLXR7OMQih59LQ6JwJPc8Aq0eDRGbT78UjeE1qMCcqLxESBQBhyxdpG55gx7cr5oClEQUQTluvacKKeIFYlj6yolfrgZ494GLpFO28dV8ztcoMBJ71mX2gFfxynv/1lw3jKw/EKaYFvje5ZDy6NZlcBEdAV5KugGsuAaPM5rrJaS3ZybSLMbASIE/att8x4q9LrhqWmv5yrs5J7M24qRNqRR3hO5HMbGo84gb+Hx+KnW2NI1m1s5Y5tbom9V+JTjckz00j3tDqLiTFSZ6yEVeTg/2k5Abn2KOpsQbfpQR0cX7Kz43Xz+BtsIW9zFKbiUwL6MEw+DgoUIvEItJNbhWFW9HM9M5y/LpzmbJ+2m/u5+3h/96Ef8eBxGCKPcN5NJ0FzchbDeQntWHTnXoSbctYqboKjsdy6Q3nCKmoF+kbLs3QmLCfdRpJ/WpGw3wy/hldgShJZKGwQdH51FVCAUEkHfP0mctZbJ3EUmhKfFARXCEBGObfanBhgY0d1URz2JSf77UzrT3uAKWMZbSv2Xu5E6l+Hc3/Zjr/T/4YMf+T/q+TfNSiAVrGBXEYNgYGBCLp5VdXVXZcnWz89rHwctWxHEMri0lLnrXrQz4NRpWTOb63qlRSPX7I3vtz50qpeNd0WIFFSUrKwu9t/q56b8K0wkvhhmJjPqUJui7i4OItJc4NvAmfo6eXFxWfEVr+rlz9PQYt1S6US2XQYRub47cY/tYETlHwmSg3v3XxfMhdNdHS0/lslaWnpOcFtrBX2e6BRUFj42XSi4/bTzfDERHhjo8iVVLeSvDyagYHBNha1U8ld9bNlugc0dck7ljeun1enqi4EZq5upq9UwbO1dqS7820D97DBSXq1P+Prz/PdCnMkTCKWQOVkzkqJN9kkXCbsbQT3nSql4DZDMKh3vE9WGbR41/pGtNgXil1Je22OlxpW1NX13HeMYWhupt7pnfNip36d/VuGaZ+9OTEiDgMi5ST2xds8On7XVZWLSLHCGo/xkqeHMzbvh+eEXVf3qWXmgj/5AMnvr3+kf7+Gj/6xzP6x4v4x79j/WAm/z/S/wd7fdxX+x2M/bxfhwq0nXIXqIAyUlJSDpVamKuKHqJnmn+/dFwM9PRInmpzFF2c0r7bWcuj6lNUDx7Be2jBw3xjca65nLGZZPOZbiDHeATsI+tfi/tP+HbEAHw1DPzELtbnzPz+xi+h5yQRERky97CngORNPv37hVMXuAGKiF1/i37VPj1yMwWoXaQPtTZxZInBkGKwLvRTs9wkBJYD7Qotp+xu8nOlXcXajX+p8E49R/aDI7HKQyDf15F8LGnPfnC2ISw08v8mv/s7WfbREhyQUQwaFgcQ8M7miKlY4tWYrOlbiVDJL/Ptgq4vOm0fx5jLSJSJkAfs86Ywiba94gdJOA93nJO7qtUbEo46aGN3dfiYx/+6WCHBkJOHgRxzu+sRL7NXdqYgMw94cemhBIJyebQHjFI8i+kYteIFrr4fF0+hpFLn7ibifxdjLDkujIyagqwjXS7yOlDJpbpvu55TiEmhillei/9507qDnMQ8c8WHz/EOcVi4/1g5pAgtiX2KVLzTiQVN8DoIe/euB+y+II8P+LXXJRtGJeYSNLPbMLcIT/P+yJiBzAEjNI0cH6uDxVQCyqjG66qrFvJgE/P0/18sfdXuhw4b2m5sJXEWmOlU+oTnc5K27fsJwXIxI+E73U1QekvFuX94kuYf7Asoc096Ugn7aHtWMOPBjvvYbNXt9gYdfU1TTRYl9MpaABGqgVQMA9cJh68pUbL5Ev2iwMgv0nJV6rcJ9ZZvdj89/iWvyhJtAEpPMOxRpaFm0rvRSzM6HWQVehraIHskIvOOxWUrfHnMpMeDmUKZ5kimOdmWaR8er8ctPRZ9C25br7NcSLx6cLkcmEwB4pkkR6+us7PaaJU4Xq4Kmf57wmypiN+/tdBfRnmi8y6bGVrXL3ViQbqDKRGA19fkl/MaU01Mmv/x03JhyppNz5FniLwNiW3v2EKXh9oGBDleCZZ9bTN/gnhnLnIyChxEDHnztcYWz2Tf7Xq2jQnmX8QzwNVHv23WjfM8k8eFhfnC5cSsmtKYTui70APdE6ZlNeV4dtfcuUGJLCh0eoPKCz9lLdHP66bMNafqvCWS+bBj+Q8hLeoTnwIFx4WePy984CJNF7bHSApFolrsvy6am7WZ8QSTf75ETfC/JDURPLcnJXNloyq/9aCQ0/ikx3241ETMSNITPJkv759mR/NGucCZNeqRcDIVloeSj2/ZKPeTcF5kALWi+IfdF/u7TnhLZtFh9Zw5Mf55hKtLPSAc7XtuGoqIzB3w2X1Vnz5iBd0HHL/vITiySxG3Hc4lXTXzR9lgYkZeOMlKE86ySTgUcxglcB9A6lBG5jHW9QHk9SHF37eu3GdXH5mmcYpU/nkS+1xP7gQ7sml1wgTyvO1JqM01aCIy6n5lt/rnM9MTSFj9mjh5/q5+84clnBTUw5AfV9dBHli/kdlK97dSql+WvltWJ//BmKXpdPsAjdGCbqyce3TtNcB/03j4CNA7v/euL7m4XORbLPFyc2mFrYe9HT7yZ6IQz/kGZfvlYDGhKZhIgP8aYp8DVYbTMmHzFATMnUEhDV2tCppWOWL1yGq9AzFdYl21zd7gZAEeWOP9uFOtIAsDmf2aXemIG0aF4OWZ5k17ozdWdZLcLe7PApEQO67+SM/NVmyLTll15IWvGNLPWzVvBhtXExq/h066iInaQ+m+zQQbUeu1sYas4ysL2rEnxSGvsQYwLmjEGPOC1vodnZlrQNORuA8N0w/AqPsXrB7kUQ0OEJupSy4eToaJZvZ4Pf8pj5L+zSngzCjz6WLtZrA1ot3oXZOp/kXa5jPxEzEcedJvGEE47u0M5HnEjeJJcfrxTtdxwTqeeoPYokRfo51jSO/7BlDxZ56riKrMmcxT8LzvKRjXmjZe7Kcu/K6md8W+H8htt+4+t+Jvh8P6/FkshDRQKuPXdnm/LSvyFGXgseiq43tQ870uBXl8cWRytftvGYyw4WO7tmp5O9cuBjFVayI8W68X55Tzjt/xClJKaCumNpbovU2Tc9LJjdpbyNbNakozP2fYUfdugiM0wg2KNx95cC4t2AZBJJaX9RlXW9nx/saKyMl7FRz6ajLYNnSHxNJaCf3Mm0NrOLopNp6iCN7HENJKUq/8eJbAZN/Lx8fNr5EihnIYTaEcQMGYXF9/Dh8oEVWosIpb2e5CQoFpQU1u78tB4kuaLVtXB4NBQfFwc0bThxxeWXj6WhCZ1yYkPGK945UxNs3ZunjC6/qEh/KEoOP+V+Eta2JNk+A/Z/ou//6EVWP2TPtP9A/j9I07rL7df9eh/1Rq0ze9JmwytCB0yLe3bh6gHrDYKzEDihJr3QnA5/+0Z9RAZOD0PPxU5MmTXf+EDEz2PyIg/DXXwJPyN0cweBrxNTc6bTXOZHkhx6V/S+W45/p4JDs+o/AY5Uh56Na7IHzuZsQUc7F1VEdghj88eBNJAC141ZL0NJqcSPy7/yK+SxtndkX8Lu3eW/OaOehUBKayYT33J0ijoub3OpJvpgYmcEdB+Z4MhbAFZ9hULHb9PL+wbi6fnzQh/6/bqj0KMjUITocctWCI6vNBCKILkuf4m5O07z9BKfc+lp6dhhLA7zvI4i+5PPRX9dzkB/G602ndUTdQXdJH3bApZvLNUAvWdmySirS1NT56bafS0L6kkcu4hwya5405qxBx/UbZmpe/gqPrruETVOC99v0dvfof22oOFRDasZZNDtZxhcWlB5MX1Zl+T+PVFrpjdOGnBetIC5pyRsY9wFzRB0PN5OkPwJcWE1ZlkE4GljPpUtlJiJ3KuJpymrJcUolnLOzhWK9niLfApWS0crC3XO28SKiu21dnq9iDaQBhb9XCDVuJ3IaVg/T2d2A4V9e40bu+ayb7yqxt2/MXd5MryZMbok9EVvY2tmLnA4DLkpQCU3PkMGzKdfLIvSfaxAt8DOp1uHt4zzFfqE9/1BZtJ2IhZcJp028xvyk80RocDwdqdyBKPQwm3SCw+Ny47Y4rBXJ7LVTD8ZZB+dtyVyaX1SYNwKTbmjxEiqDUsj7BuOQQNel7+OgkWvbCmL6gOzwklLzo1hq34nC2vewJ4JggvSAI4dyN1LXHMdWof91D7oU6MxZiZpoC1d2VAushLyL+LLzz5sbfPQhqM4KucgMMtTOCxXc58gmsDjSTo9musjMEbUrrTW5hmKHaO1TDxu4lZuPSEKzKkjJnYJdnKHPxac1CgIEJOzGNJ1w04V2Kn8rex+xtCJck0LawsHhSUcoKVT9tj67AOet2d3q91NpG9x4Hrh3hl9KZ6U3BPEA7aT/Oku6vJ3xPgr4qvqdyFBIqYNvWLcnx7XfS9JHA+0wHF0P/eYH/t1r50BU8jw/D5tLeSpoNhqYO4EjResGSXzx+HKViReObOxB3ZHXAeIrlb12VGlAqK4dO/tLi3hU00jopD+xIiRA5sxCGS30zIqi5IpJah2r/qbetCTMYUNQiOFzP8MrBGU/w8IyzFn5ZAfOgPn37Cap829fhrw6fN/Npkl6/J4Os3zFs8raZb7H7apc85VISpQurjldDhzA+4XcBp7DulBi1MeemYgeEA3aBCUaAWfPniVvN4b5ZBmWbcZpqkupyZXh+lHI2VCJbT7+nnDLl36/n41ZXLH+/d+iiKE67ql/G5WIlv8JcotXoogWQY9Vh23PV2sm8+l6NRBReti59hOl51g8STDRgsQWGtQjHfkWJo0W2BkePglqSMwXfyeEI1joGNdUsDY3wgIpY4GoNo+FLX2SJ7R0QCETSFgDTsqtpeY8gAS6qDt6J0xECc8zuVSK4Dv+uPiYkQM33KD3ZuvZOhaC7KUqc/g4s+KBtgOt8I1hSZMIw8fIO8TvE2Z75DvTni1W6DAjVswMNssT31aY+s7rd86u6nHoADLUqrXNeMpaeXCsoTCC0vLzplEfOp77HofxWQ2J/0cMbJGz+OYvezfvaUIFiNsYPL4BcWxfaFWW1RVmXofamjjO4+ewOEQeMOIH4T9ju1DuLAqF0CGCR3f3PYoG9Dg3gFi6y9QZ3K7dYdr+ycCSTCeGbAaAlCFROOxPkeYv/Y+LQqvKuPvoGErsXhDR3wtYW0i2UQ+TbHnY0R5jvNYpvJ5V+rdykgSzUvguaFXoXVCGZfKv+W1jfjCrJe0x56dii4rxZZorv0dVp1dFTJS1OXjgcYbdO6i+Dj1rBgQ73nG++EXdeW16tZQlgWNj/eg1U/qvC60i/Dc/NrfV1D+fGe+YHGOivQlCTk5pZAh62k5xtdKMp6i6PF2jLM+DBT1WiJIGrKLy9NnjatETle3cNVCwDweh9r57ufpvlDVgYseHQ0X0jzJBRFbNvMCYIwQncyZLNNYuTPnGk94uqRf49E6MX2loe/UB865fPqkU4Jwix5/YInfZFJDh7AKZVtIdgmu9RBERKWVMmOxvdzPdbWKsmu0/K4h1MIXd4/+OeujWYDaMjeA8S2I36aufuc1ReeeJDYdW5iG5dbIZFcMjaSBD87SGgkRw9k48Oa562o1kevLkE+XOEby1zbZrSD6ijiZjQN4cV7Gp7oM0xKHIiAN3WxTrL7XT+6tQeVmxCq/37F+rrxBjWzqRVqp84+/IhX23Hmdz3fdV+FIogo2XLdAE7EZGroqFf14LK8GYrwJ0Qzgm0tHpAZ3j1cK6Ab07iu31JQUKT/h7L/rzOCPw3HwYO442fP4K3dr4uTnQ/6yNMvmhpPkQdEu+IVQP6PZSDSwB9LsEdWA8t9pYL7UUpgNmjK1mcFVanmM7HZZrrYrydWzqcRgaO7snqWoB7UxvaLXb1+DT2nxeli7vcuEay/AbrcTTliaIGSBiOoSOqwR9r20OR3qPGn8f0dT/95778gkn+VA/8X6CKBqHHai0PBZ2bJhoSEdBGS7JeTzojUXFcnsDla2HWrHlRVXR3c2ip+JdVdZD2Ue4jFs421UoRJzAaWl0dz3xq3DGDRGCvWw2tsbGQxbW1mmDZs8/e7oBycmzPh9WOvPa1qNamrq+Pm43vm06aVyGF4OhMo5DDNZz9dE5FYiEnKGU0rHfYTTv48eaKnpy/Rrwy6yUHm9z13JmLThv2Ek43udqNFOlE/4aTjrFBKSorZt1T+n3Dy/t87+vqw38nH3cPJiXJTPFdX12hKYU2Cne8V5sHXQWMwfPqGtkIFHDJuhO4o0mQVHzRcShikO1IxryUYDW+VQIuTZ4VAK0xZhfyvxEf4m8Vf2WL/JZz+/wDQ/V70f9P5FH6fbgAPZjnnXs9uoiu3VX+vAWhccfYAl/AuEXy99xk8emQxWe1ik9eaEeyFRWK+pWqKLJcPhAnz2HieUfSTCvhv3sWQph9cGg+TBgieb7ikz6Ze6Kc8HOeZ9SSORgfw6L2mIIwONDSsdBu6VlmuJtjyMO6sVnA5lAKxWUJMjDs3vj9cWa713NHdDiCIgI9i/3YohQfb+KQQFzTxnSplzQzPhxAxaL+yBm4bKF4dtzA8A5S5R2z+vGnAmHb58AoLX2NtllQurXlM9YnhUNWzj/oBG/zXdB8iZBQReGgRduMcFyYPP59/VI1XuzH130ZM9ybPQDkEs/vSmMDHXU4G25mOKrOZdKncMpofWM0GvdgJUpxDhRDkAowOFto12bdtkJCoYlSWLYKG3cPNYqo9+wqzgYxY8GOG9/ItPd8f5VcsJ7+0tneio+F6lzA29Pw1Mx3h8G/wT/xXSB2rQC1H9OaHyBzPt4f3i1X0SyJrBF0PgG/U8nW5HFnVJkF6Ajo84LO0zJV4+20ZAHOFMNsCEtopsAK/rZWeGpY1z2E+LU8N1JSuX2ontOEcegMAEs7WmXfE4WiUBaJgJleEVApJ6lzRAbW6D9tvEccGa6Rc3rDrmYjrrnwhkqb1Q0w9tMjB9f4mDr2KQIY8Yebop/J4qSqzp7mpPsEdEurJPjXdImH6uehp3KL+ySuwdlHEs3SJzjI1qWIpWY2iBn72b9Fm4N+O55B4KAoV83laavjDBsTCv2buBVAsujwIRyvo0N+7Ib70fie4kP0Qer5HEIKwhkPGdmrqX/kFdy5QLO4ZFpEF8McLoii7CIkJkqv6HUBJy6oqyD9f1GSGBDdxK2dnP3Ryq4HoBl45eIMJxMPejOH34VzM9H0NwV/1oi7eLOi47qpUd12Q2vZ8Alp1k3Is6ZzdFQCOHtJn2fiw+xJh3IU0Hyxy6IDkroQWR4HG+uRnPc1Yjys9fa1Gmf8jBExBU2Kjo4VCvLyWjD0plyRK3FTw/HDadjLMM02TwdpAYJqKWOQjp+EVP+pFLzQ0byyWbDWQ/9lnqWcIAD9f/P1+FK5WTJkpghEiODIaLS8TdYTNXlwc/JWec6ohSnef2725//p4dkaI0m+nRr3CTRV7jhChLcVN4ZpEIBEN4m1LsBT0fXEDP2T//PGk/H8Glijw/AOc/vobyvbWU+SexqorX9vcvYRHDTTK98g2jlXG+zHEDguRhA4ZK6kQ2ooVt/DFQlCI5hxlLKpA2vAd0TS7aLid+PA1m4yBGs9Jd1o54MApNgwkaJRlFkTHVGWRw50a9z1ISxwZ0r/K+ER1K3YVtaeC3YBUOu8JuLc/Y6jV7+qM/zni84yXzMBEkTjnlP9Y7EIEjZfktxy79obBxK+ZLQ5/uJAJVyBR6NtJNukrH1PWUwWIn8jqc9aobOIVKsbihPZeyKaM9mDLqiITFQ0ilDadys0z6WR/MKSReDIT8rpf0jOZ4duOlheIKZz2/MBRpYChXUY+UD3vsZyTW0hyQj+aDglsSK/CwfOhNgG2mZkZjo+PsrVt0d3Jq9SgDxq5X7XZRe9IWG2KPAh/N3iQJzS7VYXi43WF0Mi3mVWsBXbSLEPkXc9pevjrQTIEsLuV0bhobBrKdS2CxD5eCeIR9GlvDm63C69ZDJhMiUz9k1poSoh1+QMhiXoce/j8BIlS9uGkg9A5nYxNvbollMwZUIwmkBAXnJRDjjmxETl3g2q20A5dH20nsezrtigKFIs8nsQ6e6/9vmBy9Z6DLnkonj8QbXOnmKl3GtAkpfa5x4a/DlNRHy9uvu16emm9Vva9YZE6XAFFtEJlEYztH2lnFffMZi82o8l5WbVEarr4EKxCKiEJoF7oO0B6euk8AKVv2Hkd1kA0NvMsFMAjTrRYNnEPMWONm3FkVbOIMOHn3DINfjktpI6L3Y8BGuzMlG+50f1sJ+QcKv0LdBVvDVBVcaaWb7ZytmaXG6iTjr6CPuDAiRh6fTqW+3mxOQyAjN+Uc7VDKSB3utJjmN3mnNZSxtYRi4Zli+b6zQzMtUVYcCJ4mGhvTCnhYH1NI+Xx+AqTxc6JILr6EkcfFpiPU4cQtwkATDy/Teus72U2t9eSdokuMTPZtqKMVpB8H+kX8dP/zDP+ibpN2hiKV7XilkpC9OwfUsJiHw19fHLA7vf+g12gSZPvIkFRCNgtHSfcm7GqRk/LEE/Mw7PjKSKh2/0OqhLiahCldt9hrzrOibdUxBZPZNiIYhYGwNvDPev6aWe8Pth/7dD3VcOAkp2TcY17fBs3mVlFqlx3zERbIn1SIdnvbGBCExpdIwuHZehYEfXsenw+SFZXpoBtIO4H1JHcWDKTSD4gDnPqQGSeOquA7nvV4NLj1MSrqSJ7Ti2muKyzzik6E+oQwjYUFI/h33DoB5tqKEbHjqTnG4j921bRyj1X5qQSUSCDrCVUo2Qful2qa8rjMPQCJ3/g3Z2+wNPFLuUIIIUgbpXp7yaEvGIYm/b9KYByusyFJ75L7ZycFFJ2z3TFTJ4jgGW98EC8rClJ+RCHaWBgsY4Y0KzZ3iKIibb0XXZ9okgz6TT1LWnnKz9xZy0Eax0aGE/7SaG1TrFKkjg7xJDcop+RFhQGvrYNylpYSfKf6n/IT9VjdkLPiAzZ12qw38oqbeEXiUtoE4kCX7OTb+TADmdiNVYvzGmRIIXUZA3T+JLIS3dZHmqLjaWCxyj8BRhUPBeD9M1K8fiPcWxyHPdnLukx365LD24HagTMBhYjC2rwQ8kC7b5e5jZlIB7zqZqZDCO67oV1cT2hFGQMsM37AuC5EceN3YI1mqJAzPWJ7lB6IVrADxA1wV+CdsIoMlw2lJaFhUU5tJeBTrFT+p0ziKmXjpedwU4CBe3rmalss4fOIvhNreB19Skqa1kLGx48GluYoEtq3nKja8GDFqb0Rf3SC1yGxCOGUngQf9/hHHwNTMPMYnXQrbFPF/GEiQ2Ah5GgcE6eu/jKlrLtjgRKE0C9HPxJmVC9MBCxxhJcwoP97qWE9BPTlGS+P4LFBV2W2AzzDEnp6793V+PpZUJuMpc230uxWLP48D7/8wWfXE2Eg5XM23W9Cey8RhRzLVfQ86wXoaYAhgMllDG/yEJmTq7dqCe6gBqspODvagGdwkyKojShS5+T4snUu9GlWnkrbG/RqJnypMZM4n7uEBVOwIGPWtf5Kwq5xMAUpEVp2xc/fpGLlXWD9yQGNRuxc/RyZiElqCed7SR1gyNDb+ZntNzXDbY9KeKXv73mAy6LLXh5NV7f75kO7BUKN6kJyb0rD3UatBr2h1KyyuAc1EeVm82POxkbIjQRcs9qayf59Mb3/IaKtRwmI5dzaHWhmN+GGnvNolOaNm58WEYILZ0sepeefDBPM61DFaNRidKVHmmliY2I43cQE8hw/ZYYLrBiDOqhXRjm7dvWxwyqw3eLFAjpys4hE8mlmZ5gCyUIuzC3mSfuOvtIy8dBZcNWd6KJAoE0cGXukEM/L1v2PtGrKdAHhD7D8+Vlg+Xi+FgMDi6SVS7yOn6UV3hh9LeIcr++UiiiarKLJ8WruQxI6wOfJuWnRArVFIQmieWbL4euOQ+EDoBtJN4zUWhITriYqfjwcfejvRtwDNSZGA1ziJI8tzxDEj1Zu6eJetSljqH9xCH2gqCAIsyMIaU6bnF+in39cMTTUA318y97pHbh/a5cnXHgvql76pyR8XpRvfyHlQUEJY1NAjK7SdjAtRu2wdZwLV8Ejj71CnodjKxP5r/iuVlBlEbp9x/KpE0B+kKfpiHW+9nm3YHW0ar1baVBrfzR0JXzmBjRx5MD5psJIwYQ/bL4S9ztiNa3V7ol4zuPzYcS1c8VziP0NRGWtgi1eHz0x1sHNLueW2xGTIANRIGemMrhp1L1q6YXN+KPuH3mLULYFuuK+ICWGF4RyfLP/QWYCLl9llWbdRfxnAoBPLcZj3fZnWJ3qdpeiH4TDarmkmYQ5vybKhR0grXnFGhgRVQ234MLLjW8QKtDv8ISSf9b7Nk/Q1z+xAf/CGX7Py7aRwziNG4k6o2lsrAsWuqOsrg+P9jGYiwVdl1tn5wka3q58zNuTzVTlDwUi/S5aYG+sJBQtnlX2M/AvbePrDrvKdjV2Z7VPQ+kEvVU9198MV1jk2C9t9gV/vPN63n/K1WCHTHvY5aSkpL9rfK2FwFa8RSPnmMrJXNyvD2NpXpMIiAgkGCzNyBxd+0AZtfIRd7e3tZ/q6SnRzo+Pv6zIfeMTVJLi/CeRt6zPhZyXHc3t0lSNl3ekB8DWVn3tFCnxlrD2sYmx36q6r4A25SntZ3d1155zJ3E0stXtXqnDnwzX7/EJEBNV4GstXqrSIU1eqtkvxgfJ49lw5+M72fiLyI4F/z/+4J1P+j/OpzQ6n+NAEhBC0zJTAr6cW4tIx9Q0CDD8CGPPhh83ZYQnxoCP9f3mu+Gw+k4hak2yE2vbmQY4N3XY/OHkdKQLxN3sffF5JFtPmMowGJuS+KW41PSw465rmUNIs+vXLLu/IM8KX0vzjBkUOJStinfADN2UmBqKpLTenfcVIURPLCYi33BygOYmpLOJs9XrHuEE5d/PjnQ78LDA1NWkjYIc+uVJQ5kkRgnsJCIUU73bH6fZ6Vw6flXP9ukATTbvT3Q8cOzl5+KP/OViO6FzYICiaBkLxyEn5+U0u49TvtyMmhTTHr9TvPu9Cx44Fv7ZL/O7abT1hKktrvkUfm+yL1PPEVenhs/IDNhHhHnKEdMqTwTn/Nd5DI6jeucHM+6u3Vmb1kA0AAOruImR5YnxX8c3e4Fzr2OW7Sz+gxHN51NsQ0WWZG4Vj3JXG85x7zGgM8iKdjy+uLhSiaHrVRFW1VqvrSuXiU3CiK4ZwIqo9UWk2KVHfkuNpULFLueilcPNP4yaEMHHyMIj3yy3STvSW7Ol7iedEIuoBLo1m94CRr4Wp/3XL6m2IhAVsV9xS/f6SnFiW5TFzPdSrWEgpxtAlr/t/VIGjti6IfKftMbjoIoyxCaCQl4MAhw8CAvD4KyeBoWT6bdBGQ/5t0ZOeSVjq9C4ra5wWn2l4BBUBY2EzrWtb4SJMll3bWiKGlTRghf0SxxQM8zCHCTq+32fZh9JlMD5u4uzG2/UxgHiCMzHwhWG7+IOJRqzxo5kMbgWLfxO0/r5Bi0nSb/INfChsRz+/3BrMkwmUPx265J8KOvnkU21p2f8lC92dvoghgywX0bIUa9c0/fDZaGiX0x2AigSP6i1b+Y6sP+HynDf5g2ve4m0jzR3txan0DiWh3bwIDiHoK4BsVhBG0l5RWY1nBO461jhL/k1zh9CFaJOA0e+Gg6NNQP7JkOVf94YhZtXIO7NX6jY5WFSqvwWSI/8QGsKjQ0rrJFj8PNaQ7lJq91b0LnK6m5ymtfFga0bOLNE8No6ReSnz4tQm+QDMzgau+4XSq3z5ItDvboF9SlAnMoqWQHba9J0jWGy9+/x4ODZr+LUo001nQEfqy6NX04vkc2/Z5IaS35pA0jUm8rfKw8MITdTrULeO5JoytYG1wnp3jQrEGAgrVKD3Tl10B/KRz0cQU5BdYba9kyR3a+ReAimmw+9wZqbaoC7FUKtNnDmTwCpYD7Fj2pH4Td1m7mSEb1r4uV8Bd9GXzyH7kna+17lERFtg+jdk1JEIVDD2SqIZWbb5AOeJdF6GtEZoQX07ttWr/w453WJE89V+odB1ALuOL+ID+MOPwtFDVygiJ2Ci193yAo6/MXPLhgw20vZHs+AAcPaf6Oj4MWUK47IV27tFeeqrcuSl1M43d9oy46XY00QdPQqXX7QY4g92Zv0dNUWf9Byx3q+9X20MmDdPC1eETYWoZyg/81O7Xsp9s7bOHbXc6tSNyXqIe39X8h37Zbtp4zticcjlGpjRfmOmuCfRTfCfh3MAlgH1MRzkWfRkkupZBHnnSFBAttJIBuRfE7+vMry0IDfafpLh+zdzPJmwJ48qGeLqzjt62YM0+oejdePxoK/o/Jq2aQTg+R9VwYHEUt0OOVUOKngrJelS8NBaVy8zMA7/wyF7f1oGTQQFIfnup0imi+mMHTCdVJ502SMqOPh61l83DiZA+YkgIjsA2JYoQwaLGthdl2mgjYYR6dKmZlsbbVdhcFB3qIZliFQ55XWbZfFgjao5w24cOERd6K7RNejvMTX5k+GCc2sLikOrC/PHgVidPZ1aLFnZ3Hid1X/K4XWu9sNP+Aqggf9jGN+0C0/sHrUmQyO/QCYTNaAeMzSXV9Bt+97e7jVdvBCQGp+JwZ50HWEHBfbXP3o99Cq1XCl4YyYefVEu8sie2stwTl8l3kXZgXUKDnLYEpi2gDTV8H9QYDW9UxVNN0w0tLL0zP1tbJpddbMfIzAMCsdDmQ/1UvF0FuJ/7mHl5AAJ5nQ2b3EtOFxigcQQ5l2mJhW6Ib/6qpi554aA7PJTs5UCpsaXJdWzLZJtxZWnGtmg0DXuMpxGkbW2fZfTvBHj18wgwpZ2mVuciJD3svb1hRYMpvbZ0IjmDDcqHlIea8QgPClF6R3ZE2cHdgWnLwZzPSVRqUP9WvXhOKHbBG4Xe3SNGv66l5zelJTP/NhfZvZ0aMAiEY1pytqNdTfCOoIx9zi1W544K5hA7fQ4PrCzZQZ8Gml9rsohRGR0cDGxunTcHahHf1SdTY3iXdmVeIyEuCvRjM/luhunJy3Ly8ITk5iG78Y9mOgpSPcEWD5idMMoBnJCakVtnxSUJJtkuTfBc4R7e+wdqMfpjNXxA1kEV8Txcm8k5ZcjlP2xxcRw0XYD/U9krR22MsWxbVlZDGdQzMhj8yXLREiCPnvsA2bUQ/T/EQEqxkKdLHoltyz8l3QkAytiNLje3BHfBAV1IM1p4vAv8WsA3/ge7U/H2EsFb5R7BJi3mK9z6G1DJU5t7RIPL0EHPK9y6jCQNR3rilhIb6lC91BKM1uHmK+TsxNgdgvlOkUZm5Y7nClQbdfhXtXDzI0DA93y5M8SZhMcrjYippBkxw3RrzXVNv90Se6n5ihmUTpZrv5215EiW+rzEsMgCryBlUod1eX6CN1g0TxiViFnx3JcZFu+X3wvkoQvpu5k1YhDE9X7oLoHVoT6/vigCmlCD0nsGkN9c2VF3z8dFBPgrONwiLjjvTS/ET2QqZ3lBwHz3YtxHjdbjbG7VsCd2MSxyeZXtuUfpEIEyt3uzeZj2dNmxy9Pv/WHvLqLiWbQ0UJ4QQGrcADQS34G7BggeH4A3B3V2S4BbcIbi7a+Pu7iS4u9MNj+x99r77nHvueOON8X4wRq3VVbWqvlk91/fNOQHZJzaADcWLbh8SwJmrdwWmqEfN4GRguJZLL3+fUUuocqucGg1AVOd0uz+WwYu6+Nhwx+BG5lmiFhDxRxjb2NSzOFQeiJMggbR/sJXJ0bygN0R7MRun2OqGd3myRurV5CS8VGQ8PqEUqK+NG0eE3js8gnfGzWqylIDnO297T5vqc/EYTCQFK2/7SRtZwr0KOWu644dqwumHYKHiXNjud64CLQEX6ygfnTGX2z4LxKMVfMNEvNosL6NZBMF5N28moQXa2Fj1hTwK/XgPa1VQGCfyoBexEe2BEOvGkboPw4IxIRJp66yGXFMxIeltRa9iJYRazNwivj3TysxZIxkovc6djO3vNFJ37pBQ0sRJc/WoynavVlE2j/GV2qabUpHMzmzyEO1ZlGIarO5UNLoYTvfnB06um/T38xz0GNoi4ioc+TV9QapBIFIhrSJBToUAe1TzEEAksFkbso5lyvxDiBKMOvCXi1uoeIjaPOrcAGKTrkzdYIajmelZ0TFiXVu19iOMZ5W8afrz3HW6trp/MlAinpLlVgUTkoXSXU51SpZe6nB7yKEK93+kKbcNgBIPAl2FHZ14q3fXbnFiXx/p7fgD1fmL3gJiVtdHcjVN6R+byzSs8LR7ayM9xOfpEY6P4A3hrSrHDgz7k+lds7rLX8Ssipp3o9fHcovxJ4a3xb3sUqmzSTAPz3MoI6NDfe0CuvvRVEBFPtmew5qMvhakXE6OkV6yvJRHKCwr1pBPIf+snTnFZ36UmwUPWlEZ7BXunN5arrrbmHnV0N0o7DApa8Qfo529E6ubi8IMWmOuLD/dv3yrgjedSTHfYXDnxo309v31fejH+pj5hUr+MEd2Mo3Lvmlo5Ns7Rma/REnfXScCD06G3lhaZcGZmj02u1Op2PdtckrcgNYy/ZPekqM0Xiuk1/wRwhVwf4TjZOCWx/S7Qtw0721nIZTc+8kvKXXFct4Ih52J/lxp1byXVxuqJ+2RQ0zbxXnZje+DsPLw3qOeuAMNsVY9WjgM/aLzq1Paux8m1I77l+q1NgsIaEeyP0oLX3cUvB2EjmPFqGX0tr5x9jUX7GHHF1TgBIUF+3ruwxVFLod3KWR/f+uRGHIisPzQ+uvBBhDuDhpsCzxVWWdUtQYaB/E1oOuuut8JXR/zMg1aRm7cwr/M+gIyqKepK/OzKF0pa3V22cmyKC0rI7ZwKVupJQdxUXHShcBhTgKJMx6GfwS5nehYIHmvzR1AKMbCTEaTeHZaMjbbLlAxne97ikKn8VIIzKykmNCA5zO527cUrn1gODAyn+Z8dRZu4B7joGLzEv9r94IDHQHu+1hsX/x1O4LmnhWzdAUHqzJE8aLXRscY1CQ++gYbNS4MMcitAs5m0tBzt37j9JeUtYi4/geTdeDHS4No2HUH5DJG80I4Af9PyazO5RToemhfFXXrG+t/UBHIcfB1ehv3h7CR8oxo+dIIT8MCvbf6OYKi3yJ22wAakc74JMpEIEK0mFg9MuXI/N6b32KmBNVeWUl8HsHoHHaj5RqNwHrtYmt/0aHgYfOYcMvP3X0esDegnwXX8hEZiWm+DzGfPnVRIJSM8tU7KYP3AYTg6ttbCjjHW4cDdgAHF7ed5lDQvhcBrzEjchq7V3b80pzdp7nwc39Wi3J/aeVMiqPZ1dllRdG0Qvjbvjx2oe2JN26DAaq13sO8Z/tO5UOGXMteelmh6GQTHkCJwJ8NbtjwdGaLQhy0yppsths88ssfph/RSS/GGX1P57kFnW2wGpEUkde90Ppm0j6U44MKsPOPMpbmHXja0IkPOVnKG7+Y0fmrEPCyGGfDj8J12yS/W8tvEJy4DBR4iH+VM0EPxD2qjkZz3se/m4ZHFxBQIRfGBkojBMGJwWZFyNYxzaNJi2YyIOHjm4acz+pI1T6pPbkYzwtG+Ij4oorwNcewxWz/WivXuyiiSW7dxyFo2uB0cYJou0BhQIr2+C1TvUjlJ4Ra3wlX8CrUHfYdaxbnR2V21fjxNDHlFTyfnJDukifti4it4bqZScdES95ooA+J5Qe1zT3uoUZXnr1kQv6GQSU8/Yt/Z6FW/PLjwzjDGXfiu9GeG5vgDq0FHy0h5v0JE6BuorXcCvlJRGDwfeF7PN4yZ2zgSwDiHzuAUfS91RR+k5j8JUnIjlGlNVjWB607kQYE1XFtqOQS+kTZBlj8cqnpzvo06UWCJA7AoBeGvCIzj3zhLrAyllXmRHNj7aPhDOpf71p2PZa0vbQAMnkjB5HSuKWMg0JgzrRgz1qjy2AICFEATkITYv7N54f35Pfbw2J1LvcscWZIySMCY8HIIggH98IJ2H4FoydOL33WXdTa2IgR/loejbBsauIpEJImb2v7pOu8xGf/5AZY23h8cw/Xndj/scX6cKO/Y+VwFRplf0wiH1wOiAz1w6vn8Ti0zTp6/PVTqN4uMkSE9Dg/k5Sr8KwPui0uD14iTT6plcw6cdKOvW4MVD9CdzC9ob6fuObHO/HwwqaG6x5bYNsKHgp3mPcqgqK/+dV+R31bDI6K1FHC33aPQ+1Dr3w45RlduXqLDY14FNwmD5nHRz+eJ1k/5YM2nLSLlDWIY2LmgqFZY8KXyjs31c4Zt2lpDZ2fE4T/taHf8Dsx37vFJG9iebWEminJT7q/zhJ78kusiWG3Voq5/McRE/OlwXjuTgknFvx7LMYflsP8475w7Ivf9/9s/zEA8/cDyH/fR/yz/XvAHxMF/77/Rx8pkqA4OtUs65UmJUwcNjY26XgGWqvMbPELeA5OzjyJcMJJEt6P7Hwqk3ly9FZR3dLPPGcgXaC5xj8CZ+SbDQj0vvRTbY6AY8F0mY5Wcx6dVl2J7nS9fBpvjlRMAOvnwV05ogMtr1zPJmxm3dTLvakDOS+ZWBqRJse9y7w2wj5PXIAP9Eodl0EDSKk4kMRGrdPsHFc3PsHqeqrPuJ6vkMF0lAmfazKWvkjRNIkrVfy7DPUlDt0HrV2NvTWwEAGrkf714cLzElW2R9Nk8mSTdpfqy3WnXVZb3IwGov1XWz0OxL2e7g+YGRgYdmeKEzzXoj/szVdSuF1sz6TcO+9PB/O7ne/KeTU77pHnJw7S5tmHFIrJs8T1/91SlqV8bqWC6Ob+A+q/IRXG/uuTv0H9+6xi/w33X7b6j4u/rPXyn6b7azoWWjgWJk6kOTb6+QZLKjYT74LD3scA+ja4bgW0JHOUn6u/OCw1YhuOcN9ZxBNzQXXPjzHJOXmjTfLjq7zN1o8SKmwHpFLJs4IBQO/Kb426W51+cSde9eokDe2qcxXoEJUM24dbJjVKSz4ZxoPK1l8BJg0wZxbUk2P+ktRzrXN6oVzEPwuU+5HVvunygz/3ITmlaKIslYMCWylGpfSPymyEL30c45WXdK+6SniGl20jtMa+rpJMrWeRjUdlE6lVcE+4Ntru6TI9dAMIKYQhWabnzuujExwo4FwnapLTea5zChkckzdHLi1sj1btx7MOLZf6oHtC4Vd2giMTRzK1Ryw+C5/qdNB/fjYq+RNYKh1gr4SkrbklLN2m4sdY9Li8V5+ckz3guiPfBuy+sNFmKjH2bOXHls5oOJJleWf6o26NhckNCaNoRbdHrwJZvq+epdqJ6txEusVLYpi1xuBSDdn6LhCzbCNDm9QX/3QTsw/3Jk+51vIZomrVg+6fcfmNMRpe3uiN12OWAY/a6akoS4QFuTBOD8yg6q9EzI6OUc8v5NvJC0F1F3lj7VDIyVVCoypH8mNlgoyCaHBIcKiPSAVR5JiN/vVPJGylepYP84LIn4kiQRFHXsudCEFrDH4KPJU16IwyrfvIohSx9liaDme0sCj06wliTTrr/U0d7AyxaBffBGVCNfPoHPUcv6CWMaME4wK9nTsFbNucI6CoEmwliunf1pQKfzVzezLfQo+gJLZbP18hcTLJRNT3gt+z47eEWalnbGRvfICAhMPClZBz+rT5jPviUUrNNKiq6wRkHRJyrqP7XBF9kpgL/gR5nx8QPmkMVB6F0/j0iYrOK6lli3X0N8TfhNE9tqGm76Na3PrThNpWzncGIvz3DgZqMTiXyn9i5+pMrLu5oLP5yGandZ/jTVvq+fIvsEWvalR7mdfWbI7FoNtNnCFGH8OzhFVP7U/mBL1/icU2aTJWXudEVrtJ4XGvkpjzsaJgNk6EL6NwybwdQ/z010RNWSoeZRxBHq7btBUqSJMGmSBcCZRDXrndjnPoXpJC/xaKDEJwqYs0NqVE7IrtzRmNVoB6md7TCzVW5XQNf9BJ3WKWLBVHP0UPnTi2RGmtSRXiixeXSnqZ/aqRRuNDtRcTw7BSjPRAgGopBkNL6dr7aVJgAIarJWdXSmxvfz+C8pQKKQyIYYLZeqOlhCdpeBqcPxImXgZZXDNafZP0TjlMdTMhc6eXaPly5gj24/Mh8vZBU/6knhvkZly1PV1jA5GPvfG7NYfwcUdn0G9PRvgYlz9bBbE6poMGkVb17SxBW7wXU9QAXFClAbOrm9ubkYvCjY/XJUajphLmf73sIoSHb6rRfEjOgLy8vIrBZJxMEdyw65LncHoJTq+kDWVPEBMafxKuWR8nuFTkXKUIVFz5rPVF9ZX7mfbp1VqwnWRRM3UkHwk0tjmQQ0NbF9ruIKGpLljAxwdTGLsQf7Qh5UFhMotcvd16aNLiLIa5W/e191ZBrKrVQTSjacPPEFyin8Ozx5Q0NplZbZZ8n5has6yJPqhsevdqbr/NWGRGmhXYrXuMhzkr3kR6oK7Jr1vUM3PAye7tRG54CCz2+jkYfLdym/tjUW8hJObzJovne/ZQFZeIMUvJUIi5zxaTZNtE3wuUqcsTM7W6p2D75B5bP/PYVE8131s5+3gcqyLFUSA6Iurjh1DcXEGYbuAycT3LyKJvDd1tXB6bpvOk+BGbiTVJshhf7ZhSEZitSy10wf6uEeaMzcFN1yoZt1w6BnZKw8WIjnj6muMeCMiu2VjLk/enjdE8SrBPMwWfJy8yP37zPzRwbCvZnA3ziXsYd5lKM4LtBox5zF+zvY10I+o9/tRTwgL+KPovvxxDCUgJN2hqrR9lL/KGYUlO/OCTvtba5bD2rlN3hGDCGs8uUZn5V2y6O9aNQTHi89HBIKOj0zlV5YoICfdBz6BP0Zwo/dh5PbKNAhAiDaLWHP/BTzlzzaBdT+2TPsHwhb2Zl5znwgRnHzcCGQSPBjB83+4k8HVwh1JysEXlWDADTPrN4iG0Qdh62EzaaeiSprB4wrad8w1ikB7Z3AJXm0Dt9OOgxg+G1tcS61iE+VCv5UXWb7BCvfAsF0HqwpePgYg6xYafLUX8pL2S7I5y7z0mLUkHs0vBk/mfnLE3OjfL+YnQMK6uuLPaYM4WJ5vYaeMDIDPu4x6deiWkSvdewABuO48xfPN8+eBKERReJqHAry6x11wEp+3pAtCQKLpcMummUdllNygURdn31odyeAdFgVRwu7BPrmxBIXujzxef+MXY7GS9yuuq3H7JWsHQhXsab0ho+PnWYhiSCp1+QHQelVzgyaYxK0yWsRU2BMIpf6N99pJ37LrSqpD2X+/FAYwgMwcNxSp35U/11qXxdeYEXcnVCq64dMKQJ8wvOzOMDFZJBzO0eXEEDcf8ERkakq6pel164BzlernC1tXsmwAi7vv96/xpK6D5j9MvFOCZnLL7FfmEUpiZZnn9rivbznIbff2N90YyCXHrI31scx16OqoFWxCbaYbUOBVpyk8LljuQAxmsjfUXAvypvVsORV7KUbw6c3Yivrc4mO0zTl27Ou/Jnqnsy7nD9hJDZtvWR3TUwOnMj9uXRoyryR2SrSizy8D1baUALkbxT7kvPu/L74wP3a7AJX/T+9T9rY5y5nFQYXU9pmImrB2uu7yGXN3OzhAxzWdQZLsm1/SdJeOSwpHJWgE6zMQFJh5ePXV29EvRXJ6Yo+ML7v0ZJmIFyWMm6/fmG9iLU4dWnHynH31v/c9jPTLgQPOo3A/0qucmnRqF75dQPBou3SGhwZtbmSLTjDE6RwmkZuM7NkxU8MC26oevrf/iL4nafrfXcmSvarncC8ZBb1Ajl7u2+ICKPr4Fmr/416cn74Yz3vmhYEmwVDjAF21y9gBtDJsilrsVqZkhQvczrp3+TtmmJoV1zVG00gsYJYJPsiY2AVmkwp6INoEjDATaSdJuM8ECMiR0taQju9dx/TG5/HHeJD3L8K+5Cw9y5gE2kDrI+8KWvZkTL8bFyLU+p1WYqCksUzXajPt6kIpFPcwSEHZ9LihjSupa3kZuA/QygFZJaX2n49JCj9Si2F4j/uTLyH6XtnIuRqmz1PcVjabp8UspqUEujXapVRiMvhnZPW1dvoCtGsJhqit6QuzsDKusJeEwFSu7mFDDwSihahTE4sjPs22S/PZVD0AABcminaknR62e7PSk/4IJyfr9fanucsdnHQ+coOQ0I45d8Dp7BK/nPBctLAtVPzFYjrFi0CyvzkuHV+FuZ0QTk2Uf4nzORRg7VvpYisDRxNDB9MFFqPAvLggWXp/ueFq9NggjXfZ7Tbwus4QbbvqRF6swjP3DcLjT02eI18PS2It7eLERut6IQiHs6VUpFtiF3m187L3ORH9nbecL6k2K8qumlmQ3HfpoGalwu/uXKjqu6c2rmbxPhVcbLHje2tqLgaNqJ8cwtJLQ9NB59yOC5EVJZLf1lgaqHodcKLPwsEwPrvJ83tf8J6rwPm2Ei915UK+6az2YgVbH4pXPwlpXzC3yUMPJocISafUjHtCYPOWzJC4/3BMN7HqCvGMQ/WifyURtENm2P924z4KZtWth6y0GEGlldWyWjPIRGRifd6HNx7R7Oh4d64u/9RQmiVoESmIc8YEFCXpb8n1NO4YTS0NcD9VK5WnSa6bx0qmzXum962NGgcDxpcXwAzhcyq9aeidEm9fMu4g9rh0GBOLHC3JuosA0gC7PMx/b7dK6qdiv1Ex2c5LIfvjbku1d1SdzN7c9zGp6rYjrgZh367AuarVZRs5YSrkf8UxUkVkcl+p9xv0fYRTZ9nWNnAIz7hotNQeLch1ZZF4ay0H3safcLzWdQopFTiJGoxAa0gyHdnunB8zEimp6aO6m9N6gRQA10AVrjzNAhJ2oOwIMhxoxIWZs33l8UGptBgtyATxycu8UB5WqlzCvG5EBuIf+S0UBsf1W13q+Gt9Jtcb0IxOe6fahKcol98iqULNSXz9C9XIPreanCw+6996oDrJxEGwGoWTVUUGE3u71Rht84qLtW2bhGqDHLxIGdRxMQGlGadaQ8Ctv12hRitJ37B/7GpsMk1rvaObK9XYO0ymHD5Q0ELNCWrO8br2gdm8yHjbcDgDNEnEPpL4aUSSokXY8z96B8dkp/ww5OOfFHk2/BsNMRBcRb1eNabkImVUhrydJ1RTdXxt+USLMz4Py4h23AICPN4i2gHn0fOnKEpvazG3WuPQHCltUaXfSu1C4iQ3WiFCt1ptEuuJ7gaQ7/1G5pyzhy4bB0tzStWKbqKaVpDP/MkppJeFvtp1fmaqzDKhe5j4zkZRv3Bmb/Q3nOZ5Qy7omrETneZ6JFf3s4AhH0FK7tMqAsa9BiDZ2seAXp32ut+RqQoLZo2s5VNfcF/sJ2Q2gD9d0xPg1O424W7Zf7mqlFfn9mwpGHrFmAk9+SSUy2znD32X+2NZU5zDjsmaeW1+FYTmevnUFEmoo5y+5p7UgSZ744XvECWwsKoqyfMQzyC1o1tb5hihugWfS7GMlh3Y0IvPye2aH/Ru4zhfN3CmCaCHmCh70az+Z5btbYUHL4aqQCSn/IBHv8/jUYYxNwu5yDOY+rxLz4gJhyLyDo14CiJ20OdxQfczW+Hqs3Hc+STOf9JwBA5BRYoWHLtalFrZqnyTJu8wstU/YnaCrv5Sw7sZWAFUKlPd5sy6xTATsTcPHQhf7Osh+2BwswwuRihEAjEGlHhbFaw8G53oYvCSarFXA8Ho/gz5UwazbEZlDv9+Ucg4nl+ND0cV/MglDHPlVbRltntSWzKSTMh7Y5kSQ/Xbd0vjo+VrU1ybl7ll3UNEcpV4FwbZcLo3YNI4MGNAIQ7iCQ517egxwj2ZQxC8OaXPFSC059Si8PSOAdIdMS+4JHbwmdEq5/XL+21iaTl0KD7a73AJ3YbxoYiO6J6E+41kgwbA40oIZK8rrTELBbjMXXwTix7QyIZz3UorJL+USbNUQQbJwgNBJ/VNCS70Tq/DQHi8Hk/14paf4arIRb6GwUJizoZ1R3sddy/Dg6EjPXB/DwCYYj8IVTUyp3S2n4QM1RX9R58mtNyNMGQA4TN/EUJDQQsUE4+OimJxnhLyBWAyEhkBaqWCE9xi8yAEUnsYBEprZrHKA+uSO23hvBA+T4HceC74Fb08GZHUlfvZAJyU+TshB7V5nJ6iMyhYs36l6scxZt5UPIlC058gdUeFLa2u2rEIGicEw86+43V+aZZ2/InWyw7hCLOuSPxdW2fHohJ55Ht+rEQk6OPRxsUckzv/pkwzJg155n43enNCOtXqC+2lH9d4EsUSRlpQ/4JWUe8Ox0H3fNfFIWnRDeWBuNi0/mmDq8yS1fzrRo/ls/Z7OSZhh9TPnEPF7hCDSN2GtZ+Ba1JQ81EqPTbnOcEnoyam+lpC9WcZBLtP3oqXTPm/qI/Kr3DkBpyiVpEG3MKkUVmZVPvnPPQR4LZ1XFh8n3IBUqbiq38yJn9b1s5o7V/VWQraFEtt4BFiovuFngAm06Zh5YtmNyji+k3mkcgypObXZ6ot3YWKzsXWu5z9CmjYwmuZV3dG7D4YI1h6RaxWqYvI3YWbdhU+LEcMPfg2EWZVothhT6GxjWCr77ZLaJvrreGcVRL+c6nQqbL2k+jWRvPDA9CBZm2ONizWJUygVcxfxLUuIT/cSJSiqY7WBZ9F+M4ixrs5mMF3Vh7VSFRb7ayxNPDGBoA+XCYn7OtGl7xJyn5IkS7uGlMJqm8WCt2g1dW9on0mCvvI7YgkkJOzdtogVLs/xrSGvaGyA4Zd2EwFoiX20nJRMfFMXfq3ehXbex6yuscqaOhx/ufD+TxYvDF34soeU45Zztg8krJUohCGrUSnTnjFRl4iKLjuTvC6fCTlOxCINuvDz4jta+SbapDllw9AUq9SzdzoptJ9eI42jAgMEey6mVcyTYzOlAtMvvWcCuu4dfzgwDqnPAbe73TepnNdQVZaWQ/NN4tl+NPBOmJJglxplfXcy/HTjddU093lbN2Llanpvat2RMMhuf/OoLv2XEA5Fc3TEoX/xZMNcyrWVOiP1HStdDvN0UJ1Pame4KQ5AoZJIM6GoUZX7E3bmx6OI/Tp4As4aglkCWan899WjP+MOvYpSuACTHkB3UuOen0gadIUsIyphySuBLPofPH2czCDwn+3pEo2qsmTnWrmRxAF+yAkJr7McBsJojDWl1DM5vga8Uq1/8m9Sa+wv4qnSeFCPX0aXyMhmHhORTY1cyZFwwMrCc0GvKLIjGWaPrKb5GL5o5V7kNft1dMQnJ+j6DG/2csXeX+uxyWtYndT39nATU20EP89qjYmxWD8Xru8jY5KP6fsLJnh8Tg+B4jGz44bczAbUwMDpbl7JT7El4pVFxQRPSO+MPirT5ch8TVKKvaeYs29Xrbf5cZ3ri49xmNvqt5azxn4055eHgxqjBW9ZPbxZNpMmCB/wznJLUV4I0nKn8CeVckIPmujodp2vBMl67G8PvO8Vy0cgyGOnkvHfrqm6SxHlWka5ex1ehCccdkm520Gy/dpSemZ4T0XsLW8p3WfCV1WqmXaBKCU80Bel9F9O7FzmbEtmwEQ++7El0V2JdrtMTRAasZU2JEWHt3uwfXiv8y0GIHSYazYbh5RFE+4Qd+fVFx9c4562rob31L9Gu8muLbQBt/YV9KOOiJcda4Qun6g4yriPM4YSP+UOPPk9so7pxBK25lXuhqFnKp7t3CGsCXVe01rdFZoGuNSNSWWSurO535mltUUw3sEq6gCQG84229+6zw4oxDv2Bt8Px04bxxWsORA7j0FejJ+NFaALOyZqxVD1CLKMxZqJVlPazJJ4J8y+y1avVXdxkIf0F7+PtWFPyr2+cS3bgJ4/A7vuFtnlhW2f4pMFJZTbKt9g+jM+mdjtm1jxva3DOkXQsVw3bb9cesQ9fLf6FxM6eKPr9vKAKS9hYb5Y4Air1uDKfaSQxRZPveXLWmo01j12gnLoXv5jq/O61RrjCm7l3RfUJk+BGm/+7c7gmNA+ll14K37TDlh5758gQp9AJ4YqsxjTpYxp1mAOE9K9y3Uas+eO4R7XQ/jP4OxDDizrVqHt749/2T0mTW2lHQWyuF1ppnmPuyshgXarh1J1Fr/uc5grtt4QPjYeXM3K984HAfhfz48363SJec0mG4NLNi3FanSXP34g9XW1efjY63jXzT9lSG54I+h6wOGNp8biY1QstjSjMmQ0y8cv1fCKkgeGZfiENsFYPd8pW6EmY0TCWfehRe1fYXOBJqlwa7EMG6WYN886RlZQilA49i0ikCpwd44jaIBab+eZAeD9RxT3v4SL/yc0/2/RYoz/Eiz+Z8T/z7kgYL8G/Q6418S8bykVBzKEhDg5OSdxeT/9/vMNjY08S3VWMdfjfqzWy9xHX1QXyc3i9Lzv/D/Vmktp7WoksX5+mcRmYjxXpvM7Zn59vCJTZ7mQyG4WrTvt8vQINRpLTwvGot4X90In4f8wmspDIOTd8jtmTiDo2YALvVdai6KQBJmZFXJdQa/m9ITQgxrttyaPr6LP8/CJiCwiPz4/xHggigKZVikHqNfm+UfuAIwzYiPxvBCcEXl8NjY2M1Ri+mRxr8FY2lo+1lwBx3zT+67+/g+hYl6F1dPqgzcMuLi4OdJx0vsPOAcPmsItjnuYUVFRSphxSrnSZzdrPjJau6aV9fVz3mcCAgLP438czlfC09PTm4W+VZOIJJHriyDOZXQsMZU3mD6cv7q5Sbgez8R886ZEPGu7P1VwWt0hxL7jC2JtwotdUa+urq5aSRt2ydGth3j2wf2Z4sKPmV9Wp12OFmtj6dXlbfabDbqQGpEUy0RiLQCU9mhZYn+3tL/SRFkAtgjFGqXC/2/j/XX1H8H9v67+7Vz870MC1/32VXfDPD4oi6IW/jAFU9xRlqHS7u+H/DPRIMspfAlu8csVNW+5eBWJ9OqTY6zM43/vuS48/Ybwcnt9nyXMVDuVnGfyB410FkjiCMNi4YDh71X8Y7Hdb5/JnVnuYwJeITeDrPVU2CbjShAT1vY7k9GUqqsGCvm1Dpj/msmAGAeTcS4Govqo9PHqETKEsGf11XRpn82FS+D81e2fAK1zyeCzKM5pLALxxIcnPxZ22QyvesRVm4y10bqsnL4KA/xb7upfOIKikUDawIlMD3wdIFFjXKf5V/XNPtKLVi80EHQtyfCgeygI/9/TYzCKbZZ/DEQE5aAryl+YpfBhEcRh4xMQFFL2LAmzy4eaeRH1HnkB/wOLwQS53/BVCYe5ikyv8NSo+SWK9OjXFRHvsdkImYym/vq2QrZdPyTsJ0uHOcXx4+jb12W8/1hxDChreu0iTvzV7nKY+UwRZSzSyBLrhTY2c/TPMeizgLoRjLwO8yk+Ys+d6k+ybCv+KnzptH62inIyU78RtGfZRiEsCwMqlFfW3AbgCr0QQ/jVVkYQxzCVTUNZsOSB6Az7HwYHYcoa/SXW0uQSmLRg3Y8j2xk/+N4OuGr32tkVu5Ak5OurgqnZmPeBAIEyewuzg5t9rRxrF2PtD6PCYdcUg14crRfGZMWLwDj3EYONUjEPxYjw9fzohZleOqlWQXoeQpr/QImqo/tb11cvhlSWqF9dgdSxa1Tyn5eOTOE6EYMyZMfZ0jN0bp7lyODl1hL3o8qzTt8M6Gu8OplxWawqfeMiNSr89tvuB4+8+AF5bwrVW8Zelp0G5l/dmETH/gf7zhp4g0HReZylfYdbs1xlaW1wLJf+bOhMSyALH8wlPsEzrltFH3Z069Su61vE0ZVrIDtTfMM7rmMd/hGUJWVte88v+elo/PdI3QUfffitF0E2+dcjtdQN98VoJNuhkRc4lkcRBh5nKKvMFMERpx3QVdXReZKNWzPJ9ICi8nAsoPdBd0/Pz5uf2DsKRVCnM06X9EBT3qgPkSlvquu7rg8FUltFg8Jekrcfvd6xmvGpbg2KuZHRlUAFgJdud6AAauTasYi03uMydAPF/Vu829iHubGijTXx0bWzt7JHSw3v1I9ThXrslqa4l91D1L95X4W2wbLQdSfsRNTNE0+E+TA1WKg1ZQq6Ck2H+fTNrCWiMndmBQW7+h2s0KfWCYwOVNe75kX4TNjdTzFnoIqNQKCngwd3D4hkKBc3blcPHunV9ewXLtoQiNdemPNj2y3Bxc0OHMv0zlnxfXr79fXBfdP5OIuiV3D5CXTuqvXsVm9OvUwEG+h90s8RtPY2qltMwMgkMiu26kNwdDFTuCWn3UQPSv4ScqIuPbybXLiUVhERvLpOp4zvLfjQe73DbyCsrPBH4k5HRR/ssXsAwMkNlrNUOsuITqGQKcUVQCQVO2QeoMIk60zJFbc0pr/EBrs+J1MSEh5jaV7+fVTsKEViStN9n1Yx8oj70kMHe+MVzef8yoM2PD/duhKi2SByaaQqXPOuVI+feLTCkF5+lb48/UPJrVxt+Vow3fWPOXfJLAjJz8ZCgaSppB/YJO2bAlxnLxtGezi8aPPxDQtiP8+XPSyjvh0QA/vid0FXDAk0dY6qZRE/rOwAIj3fBzdxJ2SOhGQb1eVpj5Xyh6FQbA+8vE9gFlajZJ5pHv2cXwxzZhHhI+gSWXGM588uYb7GnjSS7FAmJsDbfWxX+1G26gfkXSh8pNeLc/7uQb+rChXW6GoN5G2+wrZIaSbhsF+/OmghajJW2ZeNH5uOduIlK3h9mEGyKUo0BD4/xPLBdiHhSjsnHK+KzXPTwD6WfOFWT+e7/TuwLAGSgY9GqXlte/Y/HFdCs5s/rdGHEizV1Xxaq8I+qMDIbzCtbbMgUGyl4YnV1qhPGpz10dT7M47L4FtwVyuJ4WDJjja0I8HyQSQktjcxMbGAEkciAAmfpsfs7oEpwqPnvNSFfJ8a0NrY4s0tUDINyyfH+aqYsfsxSWgUuW+8vIz3Fz525ofcvfli4VcKMFmwPSmvjFY//7Yd4DhiKVFNkazU2E/FnsaHpCH8Ivyo5CifSRuHDbsrnaHtOmwHRZgdKLoafckHp+tegST7STgMyLv++uDTVk5B46Lenda487Zd6gpxI2spOcEkYSE41/iVjlv8A4qwigqQcNL8jONN+vOXSaGlocEcoPOy2CueE4+qNt52ke3FjhfFniJb/qJJD42u1+s+VaAEFcyErxKjZMVpEczZASVgjp7oLvvLF6mXtTbSkfp1RwKp5dYgt/Ks/dsEXeKn+wrIqAM/lq+p8PaXLQJHbM+uaNRnEKrs3gqEFlnF8tJLxyHOC1x13Y1rIE1PlUQxVJZwh2fvN9HywwbtQ1YKhByI25CfBzTtqbubHVj4Kd0xW2bcrkPGXJFm5qbrAYhDTwOKOEEGzwD80PjaNtz49k+fmRE22AZAT72R/S0cxfDMCItzWUTViX99MQGSrf2KZYQigNjlH3x25jJ0iUUOmyKX0snEtJPHyhllfhgxSA5EEDXczGJ0p0LmjxXqGl4AwLqgUyfe0QA97GEls/STO2oZ+SbAL8shP5TajUhgfGpnxEN6cAQwj9oiM364hUISAO5rwMbC8V0JaoH84Pmi0cYnMLcK7JwL3iHyJovRpIt9D02sGcIYq48AxhudRjwsx1EErdEqLi9dEXUVF3nFV8IUepD89FOgwcAzZts0wSFPojsXvRlZVvfDT4Pp1lY5Yk05Urgq1rtEDWJpaXBInCnVIxax5I6ZMcnAODsF8vkU+0XToUoX7h06yHsisMDzhNR9Hl3ZdERg4X189YOwPALovBCa/ce3Q9/xIJqGYFCpBeru9Pi7M3Wcd9J5+c7JGDzIEYIx9kfn1REnl9q216h3cg7dbKIEIXU6fSvPa9/+AToYsPT+VxnMkwyExBY6bPBMe8+LLJWHEI/dkLHu04pyyueASELgrxsotWguRyZDn9G/dKnqPAh1n6Uyajkv2c3/IiBLtgDo8Tpc7YpcWy9EQv0fGgL25nam6y0AFF/1Tg/XcZ2t1R+2LwVIWj+CF5gFzhq8ohmXnCt7jkmsO36J+Xuc3i7SvrZe6En/iucKKGnjVPO9HQnGJ/pav+Edcaj8cFAA/5rJL1n+7fqCuPPJ8mi8T5l9n8D3oA8+niR620HOw1UbTVrvRBSl8ggujwm79etTlrnLrheO4S3B6wQ+aHW8YO2pYWaPCPvNkGLexx4A3nkQveTrCpMh2Agdd9+U9HCfe2c0kNh3aia8ugqvlEUuk1TXday8FZ5D5wMErboTNR9DeX70YCAvhGdUXb5gY836GuoQFUh2b4d2nQCbtfh2H+KlzOZzstyHG7iDYLZzIlm+fULxpu3ycgYCTbS4Dqy5uJm4uHm8gkAb54ABrstb8XVtHrVXaK9Cy09GLs6uoDtZn/RGOILMvcrBZSeNzU9NbX/QMZZGWEVkChcWHKB0NDOA8h6lexOzMdRsEmG9PmK5R+V/uF7wPxRT8N+VN/8shfqbUv5bLdQfhv/zk38WQ/2e63FNuES3lVcuhTMuuiBHJkF+qWASt0mTTr1MtkilsEAP3FYT+Bp7xNfM3JzOKqo7JDeX8lnxRNeNVyoVKlEeLa9UGIiaoRPThRNykMslsy8ilgtO19tt9ObIpcS/xKHbFfdKYTfLUr+KO1+TeRZf77i45lLu4xm11Mr3i+2GTWDtdsczh5M5ZKSzogU8nHkdd4FWmdm5emDvT99lk9mlFkWRpROYdCoqKr7XfQDlqpV+WhwQX3xfL12u21oTGluonC/tsfsxidOKkIDNOEcyksRdcW1vKj+GVpmqyekgD+8qjceBSrPKKNNiruzcS4Y812qpbrGa7DK37VnhTB2zzyTc19ms6f5R5rSFrRycCqKL+ruVnyi9ia3M06Pymwj8Xzj/G9//B9D/pmfI/7NE6h+FUP/VoM/kHB4ki1/pPXdrMvIynlmj/UtknNOT7WUA35o7IfZ/Fw9EUnoAJ5fXpQ4m5F+zfniWYJuKzt3luzL9B0H9U1e97P6gl0Va9iPDiVZ6e0A0/Vt0qDYPm2F853dsOoDyJ6cfN9EXrih/bw3jf2qyguGiuK/mSMTFTGky99/esGY2XHRaUYgyTsbIIYIe1WISPTq1qmv/i7h/pv9UAKHUfjz5Zd2Z2M49ZYMc7JwzGy3uQ0LoyAHZP7v/Nbb7hFCI/w0XW6ks1XDYK8XB640bYq7TkNtrDoz/isGN7Djxm3r03JIs/RzcIdiU+T38U50i8v8+dfyHL9Ynn5d+vqRBov3Iim3Y3kTPfe+Zsfi/NOnaNryE342cPLFAd5lOM+bgo2id9lUQJYP0s4749oC163lWWjeF3Vyt7nbqHx+ihx2UfC/Ydtlxz+uVeU+FBpTg3xpUc2JR0uhop2HcI2IwHrNi/gJWdkL4jyPQbRPdD6wglY8Daa65L2s1WSLuNgrB1QNh16k37Aj6ekpXPbTTVaHpwy0FX/89rfQ7+U5141LlbupktZHDOiSWwKirJwv5z+iJNbwdgqqMUd/4+LvMxB0asXJ4uO4nlCCZT+AZ52SlEhFm4z06QEKtW3mb+MGVfh7MmRwJKX6g3Mo0HYDNMDmTujgd4Zxc4t8LMH/L6bBQ/3E8fge73oEB2kx+e+8vJh/eTFTCdStQ8aYG+e7Y1Kbl8dtddDNrI/vdFt4HoAA2NnyCrcAc+dJU/tOaoYp2uyypX8iDIRGqk+pAd+2V0TUwV7Zmny67nnv4Dux+eefdOyITtGzNBMVXOp645Q2moJYjTY4moZXkK4PhFi/tUxyg98g3fvDQAjh5oq12kcvnuOdZZ7jy2Vs9GCXXHn9gS2nVdif5oNHOEVH++BV2hHei9Ol3VXl5+AR0LGHaF58Ia+AovJVgQfmIOYWSgedOdioYIQ0aOnqkNWV5SufMzU+xu2WYepjAmqVpkcxVbbCSu9MQSJlkPM4HFATXJF1hTQseLCdw0lv/JC4ZJY98XWV8D0h2qjXYrLpw7ZHAPPjcVxXltbtYwryBS7IZnX5kMskFRGrmsbfXZfM2K7weqYF/46JE/abcQnvxnG9k0VHRxxC5YRtHtuEJ51ANIv9knLbH4gr75Fp0sIUP3UsYQ8zaqU2znB1eI3aftBzgWIZwXNQz+oyRlHnnS7IaTRA4PUZMjK4V970KywDvHN7N/RY7EweLTHWm+0ttgc+8mX+qpJOU1ODijZyX5DvXDgL+2iuB3sVK+L3VEi7OaheHR71Z9f/JDGw0EBMPVdy7vVOXHVA7NJEgQX/LzXrcPCsl5IffOXIEZmn48gUUj9W17bPxk+TbyYAQwWI3JqWcVAiX5uBnJz/svapksjjUGB2pMfTS3qr7dJgzeiai0zaPIEo0bNnwmbZC3nQ3Z/Sz1vqMo2xvMakoEsq+cssG6BtSZq1ZNAsxDEqOJNRpo2XKU5Q5qEJijS++nGMOUbPHVl6s/6IeJe/45wFxz9aTc30peNZkwmyjveFEuQQ3Qtu0UIt7JXkpv8zoryRE1j71RBYogK+NlWZvoUOFXvGCzFRWnA5dfAhrhjF7cz+A0oussdaN0cUsBmICmiJP54j9RYnKlStvZ1fwgN6t3zb2GlIQr7CV8lUe8u5PGAQf8deWmm89NMRjYwkU7R9745F1b91IQFvt7hp0Zv1qObBYxO1C733uty588TtL0zbwlRStKKbe0Ixw2ncwfkwD57O1mBk4PTKJTEjITN/xSaeB596VFKlCICugV8XH3ujAAFuPOYQAs4MUtK2dq1QPXN+TwqQwy7xCG7sQdo0wUW12DKY/xc70fbyZcdfg32LH0reA/N0mBp+kav4n65Ec3dh1RhOHdUQx7x3RvWdyAXxTH2Hcjl7uO29EjLcMf8Z7jfyVqBD1bQwmdjE4KJQOQIHpayq9EJ+taafle3uFGTCXBmUouXgZJPTY+2YJeR989PngNORMeJg1tZZrxS0KplvFaFQvfGLnpz/Jmyhpd2HPwYjjRtok8aPyrKPdllN+XV2XhvoKeX7ACJ9+9RmmwiocCLeprHUgHO/ZCccIl1m9kc9gNc/IVfabB1GoqwLdF+RybFohNIUyykV7rG9W4bIItpbk9a90oPt4UDgQPgmXM2v5NT1QjWCs0zDytKn269XXocKNjJfdDODz+hg8wWedQWbxazGs9XuqL37OSgffh+qvXex80tm1qU6o7Qe3KgGctDmjaz2VRc3fUf+136RtcBVk9gYGBKh3DjOsyGszUwVyaneZ4QTpUucV/piZrsf3t2D+2aklzJ57OUahec18QP9nSAsVwLGjVYzV2fl4ZGppFX7FLLrXqsiVk1Wen9iUpjdU1WGuNWsmkUuA55rHE7VghifT69zbJOLCCzWLbObt6HY9NLEu52SvshbJCE6ppfl91hCaV9u9qzhqiwq92MyxPGxczZgL2iqM8WdVD0ArDjG8jfdY+y5+oheBU71NJOGfFIyaU+4XTWHX6+UtHRHm4jnzl8bMfa6Sex21TOSoMfWFku5riwxWvJksxrixABDfJWTj8ZkmurgSj6rTS7b0gJcAsLq2ArPJhHDt2H59zv2hjCtCUVNDfRrYkld/pQJvxZhkx80SoXLshrVaS4bwU33OU+xR6mR1dtu9c4jZj6HPltSfLpRxam0s6+x343l/Nej9vBwk01C3+fHYW2cv4hDSesJzPULy3uLgnt3qCZlvZWZGhpW3ZxrayRuPrrhUcD2moQD2DS03flwdqbLbh+iAiYTE3MNhYFSWpMREVIjzSFR3TkydHgXbIYJg052TVazHx98eLR20720AT197ZfXlqsaB/1rx4EEffYjaUfFgKe7aZ/5XGU/P9AbQ58qiuOwiecpiWSLiaej+z4DuJpwYccRyzvO7TKpNOHaXGhAjs0nFIYUVtMZrH0P4/xO3/v9C2tfB8FmlpYzHx8dKmHGgnpBKowFMM1RixmbnI3KZeIblRgfJZy48WKRa/Pt/Uz1z4c+nPztqzGekF9/3hRhPjkVRIKOTCsZej2eebw5gPf9k64jti3pxWLR73p1XWq/wthaUFxcX4/60mC2JOtHCpL3YGcuXTWJ1V15DRMX9WKRC21p4kiUeKogeZDaV1zM8LCudBTI1LbAiMkNdYTCbzOlob4dRVlZ+5vo0yWsh21wUVlE1IZWVLBISEpO4vNyPAydys6+V9GjvdWVlZT9EkftP39CXjQiiBiW36rx+/VoJE2dk4vtvvq61a6rZ5snzzNe7V1d1f29qOImt1iMrlzFabW+2lAiNiDP2WV5U2f56f0R7na+QEf+8KfvjZR777eFCAbos9CsBn0f+ZxECOl5ufKb7MglMZpHjo+kCWm02UjmyqdxR6z2hB3Je1HLJOa2pEnr7D32kPv0cQX+nLP4teRH83JoDDsqZI/yfpvq3X1n4fyP+/+tI/J/EPzHWb/ekIp0Sy2PyGff6wXFVE1tXQrp/qXRell8irsRJ3aeCxDUb0uVSQwuuPU9H4XBl9o5bRkhtbEitqrzX+RfT2fzuBFKbB3Nua5v3EbQnlnxRblpvXM/9mhr07lOcsFa9TgpLbnc4y+C66zEdPYS0TK6m6hRT5FcIWndQymAVg9U2dG+5rUGWxfE1DypgNM3RPAeFF57Qpl3bhsYIO1GPt4tlXCsP1p1krAEuJqm2QuplTKpgrjRM8Ikw0sJhr2J1P+7/4HW7hYlHNBKT7ZA4M5Q86SaniL1VGp3ryebOXLG1HGMT+QckWTvCr27aoffeuOGEve1IdxUfbEqI1e1n94Z24UlsbA7cguLgDwzuRvEv1aTUfV+Fq9nyAMPejRTseyZnhyKP17l3uNSNSJ7RCRDUH9NwwWEiDEIpLBJXoJJ02143rahnoq2Vwys+WPWbr7sbTE/BnR2fHQjWKjlVS4drrYxSBeln2axt59j4J2quE00k+5Rmxn3ZM/brQV4EzUe8q8mIdt+RrfseQdL1pANplFZZR5NRnF4cn56avnndeJ4Gj0OQDW4F2/o7zFrvcsO+aBZ1n6REyfIQTn0+FylD8L8oNaH5h9qhAWQHBbt3zr52o0mS6mB3QRmcNctmkuAdz9ShoNuS9U+K+iIeUylbCb0eovoDmjVhz7tNGuRH0xBVQnrzumKps+G9DzcsQKTVn5sBSWFKLNN3pZNB++IOhpltozQyii9vBNqhP1+Qi2bYGywILyYMlfTIpA8y7o5XYqVpqeU6lsnmqMIa3CkLGet6t/r6DPpNlO6q1b+s1XKZjXAgXuLa7lumymGb9M1+x9H02COSsYnWPV/wkT/y1XpC9FZNaEAIDmrMhaFw2GnvzfXrPMc92bH6+xIcRiL1nO95Y9PRbb3cxqTeHz6qwOjOuVQ2yMHieNC+qy+SCM872l2uY0HzrnkbE40Jj3NArK67nVy/3fCDNFK+xMi+FqJiuppUR8xxspJ8Pxu/yRUqmRusaWise9Uh8P4fPhHvA2AC44FAC0jkNi21XDXjup0+mXqNIyV2yshZMyhr4OCEWcYblLl0/KdOXX/CiaRf0uQqwXAiHFm/HRINK9X41kkKv96H+xHWuWRfK5I1BIMA9UkssHQM5VWkP3VK4nIT+ULctBHjSpj3/oN4b7ffHMbjvpL/uplqInap3EWPy/g82Wv0UYbknlnGwMYC6KAEJo5zBrEOqhKDw8sjxUKQHNK7OTI3eBZe8kR6VMLxzF+2xsfL/cniUDMIC9D7Lcuv0eX6jP6x/YNJGrMKkkp/L5evHWtRFkT3SrIsb3OjgwnBJ32rmohqFVhz9eF5BhL+2Ej72tMmWA/Wdxilo4pl6hEVTsMIdY1FbGo12yteDU3W3K3S+ZPXSYrJjo6QpTSPtn84J7Dwl5medjIq7FEJXSelsvErBTW94I94mpViSO62pgWIPdWFWHcKogSNU1J/Dnj6zF7APVjzRBTEwr/EEls2U5WNb5yvn9tRoio5UYF/pYBnMpUvooiDQkm7pg9LXavVt7OdLO9YqO8bXcgeT/y0jUHaJs/IyRrbR5+itMCadi8YgG3DG+SWEMMFWBslloesCYdRnq4aOKMxFlopU36mRCpzaVd0gM06IBgdftSEumDVOhpcJwWizHndLwt0BkQE4OerfJSOBJWlYZESaXqOMhkYP8Dte+AXCA8L74wc/yOf6Hsr7r3fLYFsb6Th7d1fyAQzmax8lqDIIHCG/QQVpU1mY5SgDRk3OuS0XAFDrWB+j5KyR8oK8MDTWCh6uaWUK0yrkjIYE3nB+smB/XRK2NPblF+UcBNSLhz2Gn19eB4SO5L7XmJAbuuabf5R1vfWTdiz8yoNa9fIOGd9HD93gfxa+wZId/08cM8+3dBQBgQyutXzu7Vd4/YuTVPyiqxJTFQz6aS1SfcyzEf5H6cv5lfAVLMOOvNxjAdLquWYw/rXJNmDNOteckhv9XB/FnAfWfCDGtpAwF1W63+smRUJVEIn0sfjeF8JzNu3OJ/e/RJu9TMFTA0zEftFyBkUkf2ybf5WaOWhGU+ArvgFS9Vbn9ykVKQjOatV6RzSX+hcLA2WElVm1t5KELwmBv5wl2/WtamrsBMr6a3KyRblBHIGRu9HeOYa9x/306tRhKd9+fl01HTXB0Nvhe5W6k20xhxzpM18QbNRZ3xlv84zb26a++sqGe9Yvi6abN+9s2rFRK4HdBr+o57Dm5a8aAuD70E9/9N2t0vQlHaMoXhcPJumxyhB+clHtt/dorX98OUsY/kSqObysraPBwlkFD1OWeVdqRa7HbjYltTJwPfeebhutGv27+CR0Yx/M51yHQR6VKc3MlqxcFe4DleqaJiMFCj2QpFHiYPYbGy9GrTyMx30C/fCN21D94jdwHQIW8wZmn0mfoqh5Ux6T0LLmWfpxXc+7mN8+R51rvIBvVyc0qa+G83yCCHl/IoQadHaNftr48E2LX4fvcDlVdboNlWHGN3K9s4iti55IQog+XZKfdif4Y4vwYp9XPkCw08OJc7a7jrexFxJjPVZKC8U/igBZtklODaZbZlxTmZ12sM91HEEBImU8Qs9eHvlMyyEQWOM0Lo/gAzTbc2mNNxxx0JVH0kLpmuIoA83P1wi3WOlYkLYpaW895sTR7gyLkrzRf5AS9YPf09hs0vuVUGqv2UhTpUqke+IGjXc6uIuyuuUJ33TONBiiiWld8n7+8s9Fg4OaD9t3q9boeb+X2D3Kf4M2ELlTx+zrt/iLgm0iyJryZf77jr4lYLrOz/1NErhygxG8Pcwgk+5xkq6SU8kAzVWWkm25MLW3NklilQK+6MpUZGQkEi5e9hx1+FseZt87eRKK1i5urKEsXjl+Du9Nnn+MPyZDGPo13ZvbtWQz14W8lIJpTACN5I/cd8KQ4z4mTYaGmY8InmritZikvCcAEEk6o21NVceV4xK9XxsTG9NgBIPGFuVAbpu1fqZRjmWc0klLUWaXxCxSFzDPnOEKr4rZZG+NnZM9Y6lXmtw/02r3rrBsSyOEdzMoA3E8ITzaphkjY7jHEJ/wlx+K+bbeddkLGdORcdonpCtQoYaZq/yY/nn1waLVTbva+pxKGsg3mWukx82fl6/7COp+7uLCqxR3qbROWogUkZyb79x/LMOpdKKuod4I8Kt8n3mSqxox2KwWv2mFnxfIlJKx16slohN++pdKY//Vr7ONCNHMBndMuocPVGSBjUf4vDkd1oFucWIuxQs5jY98Is/a0cSdz82NH3rWPnUxpHPbjbjt7CT7YqRfCl4joeYVc6bcAyF/q7bL+OsXnBXR/bbffDte6BuVV9jyjau2kKdURfyw9+U6H5Mx+7Pa/yqp+M+zPvF8PCglYZM7JHtu3kPh4di0aTlLmfb1Qj0EieIBYMM4cHt56+tcEl9hIlKu30GgLStb+S9TdstQkCxDMnVGug9yrmXX30gVxssM/iOg30ALahyIuobsuvPrcLr8CeZ9xSG7GniYkGkJOm6rrdFXgBiGW1LBAMR75bT084HcRhmw5o+ZoSgtZdBdhMI3BmGyh7+DHkvaadq9H+uKy9SiD8pT1ceQLI4a5jS4EKr5PYqV6AjIIZLQWcH3ilyMBltWJV+1AneNvftOb+sy4OqjS8+Vq8/OHmqKOdLZhSOePHIFvZJ+uLDhEjMjrrLmboDfJgSoaLdIVmEwMvgpxWJu3VvB6yYIVojThZyOXeLRbnFnkK8tXq9y9/b2G/Ii/BJL+8FV6hv6Lmeppwxk1N5Q1Dl8J/gUMLdnJQLjOC6FcbWBPchxLg+bAxXD4+U2ydjiOseV+FuzW3MghprPj4jZc+S4HfcywIA5gGETkHqS994cOxJtF5uTCcuxw7+LhEXurjdtXw0tY5wa4s2emM8RnHy8f/p5a2j2nyasOECBQrFirsXirt70RYrxYsVL+4uKdBC8La4t7g7xaF4cXdJIUDwEDRoPtr+9Hme75z3/efNybmzZzPZ7D07c801m9k4Gw7nlk9zc2lFFst6gvEpnp3UREfdhW/6zTybMb9HVxInu247FHgo6VyVzVkijTXFAZOBdLuchc7envhX+mU89d9jfTLeXx9vodKtnNnflmFvDD98AQ9bYQeUtgk+P5cy+YRk9l2Wmvo6OiuKSAWLMMLdZCR/sO16dDdF2W3LuOJBL4vri+oV0hmJwC6/vun9La1xUvMu9nXO8YTGGC5YNJBBJ0z3my+KXP2+iu2rRH8Wre8JNioFHiMLOV8RmpPF7V05k2lxvUrH9l2YWIsesX5BsIoT16W+nRGbZxkT91BCXrpnWvfpq3tcX48E5DtJn/g5f9pvHe7P1KdCiHJaDlqenkPMRqUmX73OLMPb9EhyPSmi4Wrd05MqRpVKJsnVy0Mq9UXuGO9HB6rHjJjaPqyLPiLu89/SoPYuutltCJVq0u1reY3NiruQNwLS2Lm+EWoXKPyc0b57bnj482dO1OzIG/F8m520giebsnsN0KKZ881X+WfXzwxAz1E8jxg5X5VBmXoFioEJPiw7nlmjbX/thlG+JQWrx8/6Xm7W0JZ8SsUSwdSoNXzMql38zqPniHDYNFdtbsesfEaJCerCJPcW3q7SZbjIHyGZR0g4SUk6Y9RhU39vKUbF4nWI/xOFnievzDmttWgVGkqtlDY6LXRfahTPOxOD8GgDW1u6wTOOmzq63NqrX+IpeoYAB6uediQAXM5Is2S1/YqgUmf3rsFBnSvnc/rnz3k3Sr5Xxv0oQy9I2KLHk6g4sOhSGk5+qcEh3++QSh6nO/ddI5cyYYc/b+LETfzMx+3BKGRGUvBsOKjIDPjFTD4Mlbnhx+kXoh0He2usHK88OA/bF8JR1U13Jj09r9ffdijgb9RdtARWfZL12+P7WMs2yVEYXuZV0QLmn2tVqp0s9AZsC5y/O3slZyRie10WREr1qHNaXnVrSW6SKY8lkYtt0zaLLJe7k1+d5XmS5pXrN+TETN8rH1qhxKk8jSp+UjZ9lvEfuonL0dffmv1Wfc354qa/lmc2jA4Q97DWiyhsT83iLIzqQz7DrY3QljfWLlenRk8uFz7U6q1zqfUfhRsbNIomNFWsHkpUOIkqbpPgyTq3f00gmyZU0frGRtTLjdhCWXK0t/RATOzAk5B67B/YQX2OOo/x2NBnul7eROvp6VhO2XjoTOZQuPlT4900tPWEBuYJCDUMhL60FmE2unGpSev+EXoxfbEYQT8NcX6FavZukDxUuy4iqz0Nx3L8FIokJ+VoTyULUA2YtJAvao0Cq09fUmcMjSmkXhJ3VO/Yq5VIY3n9/E8W+f4vM/UW4A726yRltT/NSYmwike98asbfoDyBvO5GImN7fMUwZwLtyQw4nCPDcnMv7Ohxk+8i61kP4mTJNSh3m3fh1vG2ponOyXh0snyybgtUQwrHgPB2+T3mA6B1jeySGuz1+XtDV7vtKXYkm2obV644T+MESE4+YHX3Kcl+8wm5qUzZRrU+0fSPTnNakL77xanBdsUX66yXpAEwU+66fMFAgGGz55su2WfSHZnQCoSz7gyGltssByOigF8KuFmDl0RcbGwmw8C3h3bIlQ2RofL58OqG54MKV8h9LNLxl2aqGuT2FHlmp/SB5h34spYE9CgE5LGdI3IPKzsb8HtVgXuMeq1mtGPoubBJ7aKOZiMTn63hVlJwfk7oKPpPFg3injgxUcqASEvPkUqGtVo/PYCkfnIqYLz4P299n31sd1j0DWlcFWhmKXktDWLyosBdasuIl1kVCDNM0bj+rOa2vCnO/G2adOZA0eanPeXFwdnNLRfRPEVgUHQPe+taAAy3vB3x+moIiFaWt7GezxRzX5MvNkRCwpWO3NTVhS6SyFTF344Oakk2ogywp5XpeuhmN3f79MWH3uVYJQCDiXekva2tsaR5pU5ecbPGDg7YzNuLRnavyLWRJQx6gzrOMuimlkg4/FplvcIz9z8uTtogdSt+5CZ2i1wn35zce71sZq+1w6POnKb+vDJKaEm6KpPuPq5QzuogM+3nkCSbmdvJxBpURVgehy2MMLacLNmBjxtH7p9XJNiyxeSZ6Dupjx6EJPnVJAceiHe4dKMTdBXHFBzy5/Eb2KPUBSmMggZnns2xy45bJSFR/80vcH1NUeNAxOP5YzOyAU+gF/2LRzQB7oQZ55pkypnjA8HmNXsShrLVOh8/qLu42xlcK3Hvylk/9Wwo38X/NB5dLd5vm59+Txj9Csfrjf55YgwBBDdVbIJKxhm3uGzZIk8B3XSLDce7Big8DCxYkEA+byAHeYFmx4Ze2hLEzWdgnwDVOTrSGon4zCI2DFSKgAGuKBiaoFobbKLfSeqWwWJLgtNEUGOxeC7mgGCVqWXgAW3YY63To0UmiA1HuzTwO7TMsEohKpDDbZ146VWhvN1eoOfu4Ag+PabVb9++vXT8Gt1Py8kqum6ry7+wYSY973YdHLjiTEJ7VwcXOrXOLS+NDSTsBwc6CxhHNxPwsNfw+BZc0Q4Mb3ANAkyeJCXciheAm3azeeeX4YMzUO8rKASMoKGc1XxRSh93KaXViPkFYDVqmRVfNGeqfMDDRxOgWgQAdkbyvbWYBXwuQhOKV8MyNyKz3zQBHxefjFJHQ3ajW0/g2eMseTjQqnBYxMILw4PqdGO05q1RbGAY21/sFn0fmv3AWr+mZrZSpN5xbIxkoY0IR6IjJZp5Q2JJpIGjxMt6ya63GMbZJhRuCfPjRcDLSYQOfvtE1rWu2vhA2DEXfOPnp8v9HfXiJ/9f/X8n4ua0d8zi6WWIJX0b9gp4l3N0a+x2omUe5Uh6kHvsFB7sjurfvPxQbF2iY7FcKp2wMfu4ucJrPGs2s8DPn4vDrg6y1XPypQJQSuSwtfAJuN9p5LCO/7VwaDmTcU20ovNoRSbyfxo/VqvuUrTn38cM1NmsOuvTD/d4GLuChlxENx3mMjFaHTd4E07E3RY4DeVth/7LHP9NueyRIXEZ3L44yW9i87+Qt2zDFEBDoOvWgDG4OJXdaxkvBYvTBirWPWrGVEfEmuZMFYX69cw2UzkhrdX6QIYM3k7uI2a3LUqjJfZFxbLjcTYOTiKdMpS50+qilrzYQoQg4nCu3voyQGlL9j5Fppx7guIKGiqCPRoaaoQqfJo8//RmCbUlP/VbYeHKoek8QiP6G6VtO7/av7suFuxabI/Ffpb3f+p+9/v/kv3O1h/jnL3eaJ/tFHl5H9dfw//Z/s/Rf/q/6fo30P8PxLt9sIHulThbUamRTKcnZ2pD3SMk0E/CGebo3YnMTEFf3+LPnqSUWQo3gLDVX8nzV8nNHbstO/hee5rvk/0H8ocNyQge6B4qbk/2ZKrknL0zLJfNwrqeZfmPaFt48fldAkITLO+HNHKa7uNsYEQ0OHRGG5udn4F2EH7sH0PF0X+XhKi35Pt7mp/uZFDSYoVypwgaU3XBI36pi3t7yPO6ergGPlzpJ5dD+sBCuRZCtTsMAGhzfprA7/I6e2B9Zq/l+z3UrYtSkdFI4+W6O2D+vNV0zKnaMTOncclEiufIMHyMADA9uWUn+NdqRl29wo9QuZZir13Bak9h6fZVcwj8XzfZyIRjDGb2uKJWnB975fZKzMCEUw657Ceepei8soNQxcsRsd6KFhQz265WQhKrrGX0r2mY1L7DwMjQoLty6dNXZeEd28MYeZP8b1WysTvmnWb8+0J+WFnl7xYIx56fhz35dqJEoZNN+fAprmo/eUzHYM8qwf43KC3/SaReBvzbzP8yyQRvsiVYqJhplkUQcnsqKHPwXo+I2RJNQ+TF6oaYNaNSlle3AatwYcA5O74da7ZZI2CaJIfpP/DMnnC7z2i1nMyk1nUyn0eF6MFKjVDqNI0NEcT3dh+ZLXjceV/1Snf/qJzCfHat4CcUFn7rbrtmXUerJ32edbfTvLLPX76EBMVba/cO7ytjbchIVUtwQ+io3iMi54+ODr91tGPWoAuI9fd+4iE6unbJHROnJEGXzg+IbaTDUb2P7wv4t/O9y8//OO9/3ZY+v/hr/8hCGfGKystPYTBNCS0HysnWsDWen6ipJjXAaPBV/u5+fk7AJRJ4TzKDzII+FhbrJ4lWeu4/OoOI20HEznW++PQra2tTxXpWb28vCThP0LgYYObY8a4uLiYxOzfF+rshrNbjY2NCTkNhW+ZjH4CVKMbpBel13BBzGlF/HkS5x1UGjU4m3a+TeYxV6i2Gi72LX6ZqxSUl5d3Sf9RJxSLTCmRnUy/2kLjDiKfZ0lK9Mcx695B5PM4Juyil3kvTRgndrMu6WEJ26JvRCU3p4wnTw32tW9ILJtGBZedSloRxn4E97vzlJNcj9afTWtapnry2E49OZWnL5uvsY4TcbM625vPuVW6LxB4DYczQ3Yic7Xzt/NOd6Y178A3VTJA9E4MMvZFdidWTit/Xu9u8lY7U0VW4ys5irG9AHwJmwnGmjfQcALmtQId9XRhDYgBPsskL9rkEaGbDbTStOuJcUvDfK3X+vePr0IKBYB3lzfY2dl/NmZoWX91L+Qq/MahP82Q6H/g0z+c559YSvQPjCX657vdjKjdSmY50JoaQECqLsewboBVzbX/WuM8yf9AZNBKXnxy4WLpm5TYWF6yJ2MW3HE4fhj/NCzkNTGM7jBI0tEV0LjWbjaG+qaP97gBl6fK5d8G+ocsUveWdOeyWrXjgFxoLadif8s2NymWxWWhKIeu8CMihn957R+oRCAddVK3OrJwFl/DrtCTSvREm5tZ/xdU+2MCXTS6Q33A3lfE9Y5LP8prSCTpxv8d8pPXRzLuFSjvUbzKjLAMqzoasMr3rFCU/6WRLGSzZIpbSB9Mm1h5woAxRykNNiS6yvBvIvHsWkW0z/a3PNpaQIu9Jy90l91CPSHKQr7d9NuOm/C7ngf/usvf9w3Fx7saNu4IDcrSEDd//lJv6vPgUki6D57cOmBM9D/i3C+lw6SQzULpiZ4YXSgXk1QxaqeS19I0RptzBt6/Vcxg/UOTf2Mb2T2eMdRzvpItUDuCT8Cj3ypGhPkpLVrT0Y+9nfZ6LxhTjCgGUP1tMqeR6B0f4CGdiBM0l803Pu2SWGsXs0H9225+T4QfhdbXcH1hiRhmgnvkTlQxm8ECwafDkyht5GnfAC0YlKrpMmUR4SFSzV5VU1qy6WRLW6GwTFrk3m4dp7thg9t5/xOUMIFW9+RAYnMOVM83BhKyijzb1Sz2y+QeyIGa5xA8e077Dot+yHaOmMDRUplrmyUtq7rnqpiyrDnZi9yX3zj2csz/st2/7BtR8wZ7DXC/G5aGY9a6YzBAyq5ko6TaJNhec52e9m+r+bUM8HIklwkk9OsDSoub+sffk5lQQ9nfv+HZHOaYIfw74v/0ie546SQ7ypQX0WgexRplr8giIAMqvgx4mrn9Sl/NiIpeDcOPPy5WVcOIflIBPGBYKxAD1n0zhNUEsHr2dQrNVQfaBSw7f4D3b9LAmBj2tU8fEY00qBXa7vDqKPfVkGWXPO6diMqOdBST4CYSSWKs2cSHlSj9prSurx35ysQaq5zpRvzxLiG+k357mDNU9QT/MaTXwTvfRRcfVSe0M76V87NAGQ6pHkvIN8ZTEMdPlZP8L7L16F83+xck/DHoX2LWRf+H8SI2CN6FK8XtuCQ8rZnAZ6328x+U2pRyp1v9vCbylEkAKCW3cGjJHVe2GExU/cmgX9XZxnMa/YwOxW6QEYvvH4I+MigW3zHoaGqJ1KEUvj4pLZ6wsxgyvlB2/eqxKnPFO/CcqzLvTxVgoxJ1H7tIlCv2Od5cH06btV9YzJZ/eLTeb37HpaeLtTvf6pXolMERb6ZNLMn9VdUFpkjCa1SEyos0C/I1chTu8PlFAqt258TEy5/z8IatrY9mmdzNYyeSqw1I05wm6FB8qyQ3XarPN5GvqnwnOpTdmp/mNhkyM5DAlqZKk7ZgR+7k3vY4mjeA3PoXd+YwaRNP4bW8Y/CplDks+almxSz5EfnJrH82bCOKsn91CwD/hpF/R/6flPj/EtI9Qv9HzP8nHPx3NP8v9P3LL/7bU/7fiTL53DEefKK1yJKSXb6NbbDii9z/kbrBD+7BOrQdObaBeXkbfKf6YGiKi8z/oO/+Xm+3TIejL+7wDWtUq0rUKMVf53+LkW5Gtu/D4LP+TZ6Ukl2qUC9CYAd1fdWK4MfwOCY+lz6PvVbZjtlQu7BZbpcF/3ynlmA/b8JxGS+RenOBY+YRq/GdLsOH3Ma0a/f/vWzjLWA/CDe6LgU0zJrLNDGBwVSj6odnTCsFCRnga0ydztf73QpvswSaSYZNN7vf24u7Y18xHs2oP8EzUuMwHfY3R3CAemJKMnuFTPF4zs94ATP8TJwLfVWLuA+iDzsW50bZmNSsjrqJKFs2wr3k6O+tGQBTkHjwk/jYkl+B3tL5PMfChlTvD6A8LS8zNa44Il0ZVQ/FnKw8+gc3JrjjxtYzDmBQDNF/5F9uasK6urff6jeizrvmpej9RjMa7iviu7ozZtgR935oxDQ5W/qWUXhvbQ8y1ihHXU3uqpkDsf8q2rYrzW9K+y4ERfklS3sVQtJRdXAe8gDmtbbapEP4PRNHdiXmxCgQJ+mbwdLcVNoodv8zmydP6/NIGvcYaJnuQtRra4GwLxvR6Pz6mFhEfdVr6Xwj1sTceeY84FFX0xRrPIOW4EM/5G7COyIO/FgQ9d9EnB/i7WKrJrRAJLCCa339oXRYx5mDmxKyLzWe7+qIxTLw4sv80xHSINKr+0Ao7EIIrOd5bIRuVltlODfVKpxlKXRmEhTKT+31wJpGbM9KlwEwc87TMgvMbDdwgWDgcURJq6gebzOL7LP+nG1wXw/2kAMMTtD9dXDer4vC/mtlrZc2ViJqvx6ADnLzFONupoaEiGzcQcpoEv6A4H+7YarPgf3esLoJKTTMLYFeEcEgjhUe7Ka5ZVwhHLokULgCQFcb9Q/Wi/eV4rKEhnhRAWNdbVVY2tgt9tqrqWya11nvN+FX1Yi9d83ve7EmhlbRHjVLQJvPjVwlLlXW3Bl9D4lHA5lHVBxPSojC3j5qg1q6ctu84zvttURGZVVd30xPVmWy3lp2yKGHV+dKb8yVWiacAiT0PzKIW7twrJPuyX5vLnvIN4kKPDMVCod3F2urriA4n3V6azAwIlLgVkZK/GDRZXRTkjPz9r7iQ2D+u0vhHxZOe1KKXks3XdHMz/hdOqjnQDU9m7coLShd0QHkMu+qsqhUNytduifhNcDZ68pn/4K3X+1nudL+i4/+ZZn/V4Gr+05rBWoZ9E+eKJ1q3QF4BBGbTiEXvs3+Yn3s3nwNeG+v9I7IWzY9uOtX+RkEAIjbWodFnbsgMOAeki7kZCwuITFNE17oHxDA8uLzPYN6R4HIs8uLi54Qz8l81TtO//btW++xVOqVXX9l8jrn1acDiRx2d+lJizeP5UA8T9oZp8FXdlNp/uU3aWgU0yYJvJbPea1HSu8CYgKHgeAnZnW1g6XGuy/4XG3R/zSCkGWK5FnpHSN7FscUfZfLaM+U6oMrAD5H63epTDYvFe6kx5i7/1BRa/5ufeNJVWOd7unRQDwLAbT1PHO+dnYd2c3OKfitMODWH4dGstS3WEV9WmWy5GfUy1fPogaY8qg6aAGuzwV8T94cQUYr2pTMpsuNxGxny+8itIXA3dfAwyyavaA6P79s2L4/gY2EgEmFO/LsANQudUu3exd171Kz/KLp/LQVHvPeLX9leoHX3+5FkHA5Cu5T8b95cc1vfZfCfKCTrUXTsMOrQ9O4gMDaGpMyKKx4fBA33a1o41B8v1jj1T1V6OzVFR3ug7YLdLdYqR8yr+NxWmZobf9Ic+D2T6ka/Y4p7fB5qUUpLRCNFOmeY34v7fDixsh/GwEowdv56gfN0O4pkUdbcW+BuTqzGq1CWMgxhmC5Sfc7bR3K1tXTrVCmbpI+82O9Rgvq481h85JHsYJtHfd9jbsG4AiSYb4bfy5mx6bVc1JgUNIsb+ABfSDIjyoNnbzlz2SoD9Y4/J6BIrnNHuX4/AZVroLCb64dNi5c438jqNbci0+2OzC9T6FPIzVi//q4fLeBDGGfvs21JPVtRnUwuWUV78rJZ3eY9pe762ObvENvcu7bIe0rcwSfjMWic9Y3+sxEEEBKGw+o1VTs098mP8F/JgekENRRFDH1eIhOY0LdsLwxI8IWk9X4TbueO9vMeEOvh3QQWPJwUf/anK2N9UOIynsCFrycYAy3lm9VRaDJz1DMGSPPx9+nGGSMhTMXvw3QCRTqMomlTOR/VklDUlnyjZAtKeCtfOUj2Z/6iZ+FdcLq2lPtQuqym5tpiCY248ZG4jV7XH1G14qYFonwX/6DFLO0xB+NJFtwOBjxMJlatrenZw2AYL+CABQrQuVZ0sEB1YFwsuXZpbX11dOhvYn0S3nXD/s3wfGFovHT1KtyPRLkkTec5WaXTrJbwh4oEKrr01C8X9GRnbNMTlHYdXZHyNfyuXqThQNZqznJoJVHjkN/rQXby6DLh3sYMUAiPIKuqgj31dvG+et0EQ6yuHqzwyYpvbYfiqIBnxLZL6S+LOz5eaMqtnfahZLtPuGzjbFcLk8Yop7PfBWOD+SRazZZvywdsRhaycoTkjj0v3YSr4CaQeZSsUTxu96LDBfCNNCOEiu6STwAX/y6bChx2oZaFObh3CFBTzkU+cBzNeouZdaz+eP1UnzOy0RP+Re1fu9EUaFmY7g/ur9PJrf4Sup4f6pr6fLYS07R1fOlfL6jaGfidDtfmzbShOVoPwR0rXSDfKPvc8ZYUvA1x0cGhSwSIFNjGfNO/sYDtP5GIAQmNftj8rYZA8jdZpy+QvKbC+2Irx98WWbfH4uMLhH7+NgNm1wI2rmFXUMqWYt+ehzPBP1sDg9L6ctwm0DLpjlXp379LA0631b0sNFtOlemSy3KkC/kIxiQaxpjZrHjdl8IcahLiZcT/gCHmXcglSqcGKi2JMn9MeshYd4gGoDy2vzCzT86MpyeVTx5DPhELeqJQg8yMSPbGHDT/MyMhFIa+AiobIzcnfyAjdirXHH0jEHfVXX2TyMhAOaj54elXPtotFFVxkgdyPWNVl3wja/KvFNUcLM7vneppR4qf4ls4cgdC1bDxQB6rh4qvyWlcOh6PxyyrQPn86VBVm+V/wX7105mTaWNLs6GYqKzFdLvMQHaPc8TSNsmU/xgoRFMQyDcJDed9KtWtHk+q82agxr9OgCfnUJ9ju3qaJEIhFPmEQ/yWrtQC9kgVUmR0db4j3lzy+KONKjrImS8ChP3pO90zaacq1A+iHIefpLGwj5f835YU0yTw4SFVa09WvcDxnG9CH+ZFEgbfrXbo9tHdwIyO0YsuCQYhRMCZby8qkyvheKLhajZoG+CEZ6iofgEHp9ArOt5Sqwojw2iXm+G36NnaMVolMhSQ+X7JOBDR45l2EUNQSAqGZKbd9EO7WIzazN9I9CbhjB+8YA2N+koHN+3i5tftYpOCeIQDRGTbll1K6bQQk/+Sv4PjUo+ouVnnXziiXpQlKFdjbhYTcs85x6nFE+J4O/WvUXO/k57FjfqvVelOhQi28Sko+OMBH0M9lnjk94AGJHA7vBaJUDvGh/vF2ISaNNjPGzo+tjvYPOqmjC66cQcvkTEns4LbDOB9L02lekYGCZrusUUogYk46+7vg8JcP00XI0pkZjRfTlhlXju8KyId5/Uhym58k2ZzHV9jLbFVkDM8JZcyUTWRGUXF1ZmTbD8ZChfwzOkl0z1P0Iwo0krjyh1qUeLsE5bBvuR5vuTGnkzNik3009xBHHs7N7paaJlYNHTBopW4uJAYiudejB1xCs8qcHA6IqUe+MJbHaK3LUuDAvslWBTFUrAsWktDY+j8pYGt9g8dmPR8aCZJ2mFvUbbeaXB9KdY3tZRv9Ad97TAt4OjZCddS+eV/nq6CwL7ozvN+adMz1ZtiVTto8QKNs8st3CNtiY2NE53pCK2+6KcY/xvbMC/k4tnD4FB8OYDa8cNQ37q6rAAwSA5cWjsBY3Z9vnpE0sl9TZ1A74N0WQdD3gGaV+shxRjxqqsZJFIplFHL5vzEgK9kKP+HDvH92w0pbLv0dU3RvdP6EvdtqvnUyz674ZUdVwZaJe8vRho2862qPbe9wW5nFxtL8JdmkGlqnttp5tqpEiwDFSzJ0G4MXz1CrZHidvdhapJLjgCL7u7Uh8ep8b1vaZ9X8V625Qo5Zh2kBhy2HKDrimpLh86waDnsoJxrqwML1PWlCyeS6s7L6+GVnPdVtR+VZW+tsZgGELQR7YNyH0ZXeB1nvZRaTZV9AGt91bPEAZyibBE9xUv4UbqA5bdS58etgLepmQZfCgbot2kquna3yHfPLd/vqrebj3cOrjXuhcC3fX3kP3OIohjr3DRkgBvgEqqKG8TNB2dRN8bv3qwG+qvHGcrVbUuKe6Fm8mtnj2Kk/eqTaXFqVA6TQPg3Cssjd5s2GsrLVmdrxzzxVldwbEpYtYNEI5OkngKnlWos2kceGxzj4fpw5sKCawKw7gzkHsO5DO1+5sXMbF8JLkWze8pXTAfbwmAJv5YMEzgF5wGSirFDUJL0rZdai+TE1jSvm2vV6EScRe6P/yCVpDcSaAzGiVvuFqQn8sunG6XRGu7DvUKEpPVIe4+N+iUhz1F7QY0P3u2HbAzlHcqe/H1uiCe3Gm46z7nFsA6iPQgJu7UODGKUqm94rjPqcmaewUlcMyblgDH5857zYLDGJ7eOFZ76Sk3DS91hfvFVq07hSzPZLFYic+v8Fl8dm2vs2839x3aeHcDC6/15eJo9HUEwyUALbHDr90HbQnZ5zM1DIh5LZMeRQd+DL+Ft7DQhkq49952qnke+GtBoBc/CIjfxXZ5jPQh7GOryp1BXPGH92/ylehlD1xe2/u1pbVloMRufiIfdoy9aguMV0v4NBV64n87iS+4wk3FpmvIpVpQJs975GnQ12bQBs/MHJ060+7XzBXIERw1Pxq5Er6Qa3nJRr0iMVA0zAAvMiVzLeBSWUkN0K+1E4JkyGKofDMFEEhjiQvEjWeIvqgafsnZdq9sPBCngaNItmPPhtvCaZDroToFl/04fEVsYIAYjbfV6Vv1KZRdwhfFy4vEcen8atGuQe9mpNupPde5vkycGxO2L4nDsyLcsLTWOXKzN++HMnt4L90xfX0qKINS2COF4qDCJVEeFQ9cHceyTFy1uIChfuAWOCy9kFfPqNp7GSUGDdu1G3HB/0X1VZ5LRzmL9F0URSt9rONic/Q7zObKPZTiD4buEn37cMAn6VAVb5fcG/EiJvomWFQeK/e29DHHpgkt/bcgPiFxDJwA4udfjL+mbyXNe3dJhRMVZHg3Q6eemGUvNQa8pkH3yoQ0hYg5HggaSjXFGfnhOh8Z35OpaKYzXRco3TzJ3QgjetO6EH0viSJd1Pebd5Z7RKTQss90qwFImzZ0bt8M/EEhXsXkXUQ06wthB9uJB0AA0whcnTGI+tyl1qt7uY+m/W2Yt9i8md1VQ3rLIXbMj3Y9IuuRtCm55kzIxMklKRYxKbvdHdk6XuIPMKMyi10OCq9l0U4VdONym2SICiPR4YZAXhFyGIRFtAq6sfF/esAHd/InkI7COts8WPVRudpEkfyemrrez14o5EphMJJpNXsiWTuYFcdeBOrrHAvmUbRvQHQW+Y6/Q/eGfRtHQi8Ie4eMOAkpSkafbZCooIO2Jy0J42nnzV6DDTG4oznVGjKTFdLMemz4wPxJhp2H7S2Zj292XtS6ezz30h/dCPtS0fK1w9dRdmGWlVzq+63+Y8nLZJP6ptdp9+yYKYGrhq+mUspVd14CupGWshbDqu43GZsaMKM0smO3nJ8KW1G6RCgmzWZkDBWnpGIVscMru5yG9OsjiHofgrcSZhE443ZpemfmspjE2129n4WRQQu9rfke33RF2sa8HS3Zvl8lgqoPF3iIsRyklztt+nWLqEAOzs/hFeEukJ1EjRP2lPfs8qI8ENt7uMbH27+3ycwmkMwID2bSUiZZxWx2OdY/dOXALn0AB0tRaPwsNrQXitiFImD82DM/Z8vRt8Vag0nB9htp4z6bNIbcK7K1VAGEfufWUhFRR14dNs8knm/a9n/GJmk4njlD8O3rQftDFktIL7bR15VPBZaZucx7ejWujyx1qnNH1barSMBQhLGTt0j35iOOwlsXBzQaHCZvE5M29pS4+MTTbW4zXCHUbgBhQY5bykoesQC52pr3lOMlUf8wOvJanDILj0a9/vwliuTIy09WspvcdvOMl/6pURb91LPMUnyOfdj+97t1B0IGDfTnFoCykRakr7isrrRHCwypSQAfo2/cHDNgALAKQqptyLptOe3e2rIDij7/F4qceiPIRPeRhTKC+jGFQPZAn8T28eTTr6Qw8ab0oKl+DngtVOds2WfcMB493eCIICOSaKPLlUD4PoLUcaX+rKa6FRWax/36jWBaHWQZETyu2cd6INK34xGTuC2WaWaepYkhfoKBvuajc16oeEy+vN2+fIMKYCKluZJQqbCgtbNFedxm1P1qVzELL9RvqfsSxsOfcd6PWZ89GWXeIOGEUwR6rMa5pRYt3rPVKER8/qPeY8bX2arDNRGAoOKzcme0HODamquiIMCpsHjRF+oP05C1VWn/cGgCdvtkRLD4Mu+H9ZSBc9adjSKAqr94O8/2PZjkrFd0tt1X3ELxfZwzydE0QQISQHNLDsDDdl3wQ44Zm6+jZ8CRk1H9tXQzqwj43Lvyu1aw+HCSy74P7gxD9DnTudXEV2e1BRxESMCZU0kSMqzBJ1ikzq/abbK+129e1B9myYbGlT70LoHgTZbgQ5Zmx41g8G6Aes5ouH6Uk2bK04026/Hl1504kshmqzNg+E3DOVv7iphYz0n/jSHtuAItDgkeAqebiOMYppGvpWc1LD+yNN9v1gLjG+6KrtBK6V+xuA8+B90J2aSrVzq52rluDKtWz0TO+Q1nfD588+nVyn08BmQJ2LFn1+0ZqueZfxa7DYeS9qbYJZdwrwOutT1XmZmKOB62/9HuYJC3JyzW/9j0ESZAMDMEQQh0tBa59UM/Wh8Jlj+eV/ggSoBnldnH2iF9sjRSK6j9ZiIXl2+krRDXLDwcq3N2ldgLutQ5sjw6ZxJ7SEBCJdMwGnCwsLQ5U2aw1AQJTnP6flwQ27sEHpihqx3VAJIfU7r4J48pNq/evzI0C5jlnWLX/fTpMaL4uUcq9yYhvDcLb/yd5Enf/gmTINZ1+npR9UvLOceYDP2uKadizcaXBm2LP+BTu8bmfYfUtWwXe3aSRTohW+2nCOiL3ejTncAT+1MibTREUJwJIw/GWPtvb/+EZPZDe4TzKlO0EXPSxuBBeRBXk6DCo3UbSgr7aPPokIcH6mWnsZgn36ZXD3Jcentjmjlv30lBgxzSYYF0rughkZCNXShx1cFR2pz3OhIz5Fa64hWABrctzS+Krzy2t38L+MLffr9SfyVqNHIj980kncpyU6R5ia+mRIDnQFTj4RQzsHypLlVZCmznf93ikv88QJICgCaEULzfdt4nfTmj1OUHtWby+vgyHv6ZHDS80m9MAZ31JS0yUgmJIsbHM0GWI3hQo1n7Ev2SY2Fg87QkBVTCLu/aFktnJ7sQvRyb8RbeTuD8PsctMN9n2nZ9VzijLEkCQy1Y2F9T2p/QxLCi1OwQHY09Go/96oZc0OQhLf0JtVA9boFGPmFuLfwDTuSI+T7RzVNauKjhxloQyp6UGQGi5wBxzEvmHDKpfDn+1Zaouj5z6PK4HB6WCq2vZyYFzm5ONJtS7fjzvcdGXB7TqtvHDq3PVl98X4AKC+I+JTh8Ree9SG22z1X3JClH2CF0xOostaw0/YRh2W59s5V/m+XEko2J2rmP58c46LCpNug91VGcqJG5QoZn78W1P5pAhXqCVZe+M8Neitvk9sSzGMflgRnI9MdIQ2f4MYuzoTgOVzn591gJvzGfNdGYeSZ/FObfWSgjitysOWXyCfb7o2nLk7w3LZ2I4ZlU42vWYwrC9WMccIrpxqe3sxE+77pEQEeq70cLQWt+oZzLA70bbinTjU/m2TU/5chZNqktd/BAFAEMouJvj80l12quiWx4fPkUK/Rd/K2sjyxvPq2gtzjjRPjwhqI2gDavI3tTjK7A1l/e9wKS+mRHuC5jRrQjPlX4Pwx0MPl0rln3ek+G4qB9cz/y50aqOq0V+/h3b1eaNbXPMB1m1vuAklt+toRI91D1okU3DMXgFcfdIVzgiF4F6fOK/OGiBRv8h+rCzNtB8Ggkns7MZnRFWAIdWRG2z5YwFAsSDR12ZmY7U4NHGKJNkncrREn6x1452UOpScrLKFShm8OFU47sbjGij6jsVhZtmEiBkPyx1pXZqS3JMCpqhKfdTQPAFUm2fShcPk473eVM/Zvg8q1whkHv9+dkSvqBtCVcDXcmW8V91WpPrtPnfUtaWamkUFZE0vDD7JJDcmlFIGUlK0C6yfZYeJ8qCrL68aRwMn6BqrfydkQAx/CIeYeo3ZGJU5C8T5bh4hRSfpLaEros1PLAb6t/WaJE+Jw26tss5R87bXFYeFAai9lCT4ubzwKTDmaHF7rnYL7WBqqSRaLNOLRWsq8bTBXtqR3uSPXWRhB8f50vLMvWVB0jcDMeGUdv6IFMwtK2D0h4Jt5eLHXeWnbNhfyRxXBn0/yTlwfoCk6NMbvLEtc8DSwprv5dn0r65j3HsUmguksu9FvIFNEVGu0vA9qoK9OVH5LH9VdTSpW1d64SzFa2+hAI/fxxaFKa/Vdhg9RBfLKzs95QbBYJXcEXPG2x0XVcLyQYan1o8oyVSGbGyGdPjjdLPvjtBiKSF1505+ou69XY9SsrT9mOkbOh2uXlOzKmss9fktryvl4UsH/acbVmS+w+Ekkn74v1PqzmrEks0GlLT8QkuQvIWWYzFciviSMsflH/JcZaJHBDcNYwZOjAm5EQ+EWHYUurZmQR1WxjT08rs18SHXQfa+kLfI7KehdOs1XbTa4I6su6JyncH1TkEEVyTahAu/ljVx9S5SmE0/toVqTt0G8HcgkM7hpde4QXdPXVBL45WBxfNB29SjFbs54s9Eij4l534YvsDHWeRlVqzGl7masOPv1mT47I/FEL5xxB9q+nkA67lQcpNHiqFFnLq0cr0aUg5+RdY9N3cldr9gHBsnZeNVdjVNTdPXgU9n3vb8Tmms7wmEszYER4iA05AqrV4VYGivk2F9wCp2Yw1aOorF0PtbJlC3GTUTcu2qhKbqE9zldVbvtqnnvN4dsv8cwV+h6vSkcxzg0mlvgJkV6t0+pKPH0QEwgcrNOkFDzrH7nplQyPfMzUTb0b0jxndc2nyCXcdiaJjYGeXdR63kAMWkExFFixvi9/teq7z6+YSdnVAD8zlqxdnFtBoZSAHi7sqz7BY3DwrLJ5Da7H7R5Y3mreoc+suHmV7xXEbE2M83ouPdq+9frHeGxXK7BN+NPCBW/czIegCSrm6sOXn2GxV/g7TemZInww0zR9dimwzLc6jtLL1YcTlpcRK5H5PB7nDgctO+XzZ3Ypc1/wN4o9Lb7l28GpaIYgZJMv8pYfoMXodZTLQlx+bYfyfDwcm9N9tKIz9OaW7vGOe/7Vyb6egYFUufIemWbsKCC5NxfxmqpA5B7PURuRYq9W1+uPmLKbNMkBA5novWkpV2FWvE0xSJHu+s+ubhw550XWVjfC6hG7o8/CI6MZOyH33UT9h5jrFiZMj2YKYhIE/Jj5sxdiCcjawCti6HKzwxI22lXkde0G31cAAbrF0pSj7JYq0QjUbqVrI4eqVhcSMUhYRa2qT/cwR+mBEZLs0YmehVP/ieZBQ8oeqXP0ZEno+OnuV//2Huz2MdKWskBzuVjf+LLFDE7N2G7oj8vnFCWh3o98/Nmjd3Xy7Oer1bWp2kp5MlBwZb2Xp7k20eW4HKEZQ6PyIGbLnVEy9zEq9Ha+0qs8HiLsXjuLBNgeNjbD2i19G5cukDKUy+Zs14oTA4hwjXI+5I3RTJj4yDUcVptaGQk++Gq4wvuOCQ3s1z32UV93ydkL1LVGs3v0ZZVo1o2ZjNbX3G/d65KYL0YxVH2reRBpMQwyL16Iqh11/vT9YIyFrh6hKc7g1rG8iysZ67F2RV06YvTtVldrTs22tX3F+x7m66auzOY2kjnRXCITUsyXhUMPPN8rEuxUprdpK39YfBF+CSpbXQLcl5ParWO/PFOuJtrqFg8j9UdMa1Plk3iZmifRx98eWUrz7zvuBw3u7xo2H0SYuO9JBT7BB0PfQVPzCQdSiGUvB2pp6jOO8w2ylWieOuiMFehoN6mtRE63vg52iK20dmUb0ClUmB9hE3EFJekaG7r4oUxe1X/pUQfrBzB8eIEIGeK+jWnqheX3OS0K7x3utDL+qq5q75LNRl6qTNGIjj3KvbFzy0KYeChiArm2pJImB5NX5uYUoXmP9Qs8KJt3KaS2jECiqVmSz3r9tms0A5dESkfZrZf2htkXfKB1AF2VZK7zzZkCe5lBEpqSVBSQKe3XbJ92DqcNq+XjBZxE9xG1ahLk8ROMTIbFK5083wPdlqLw6F4ryBu0KTWFanv5Z+fHdHstQ26sny+QxmMid9HH6VOCCHvP3a8SYpaaqkLml21fdH+Ie7oR+LoqgNTUMzbojUbCZkD9aw7a20FYD8iBI4A3n66ZjkzgsszsysdOjWNPZh5uc61NWg1CEmvuk74jNp0VDQzuE/fWAsodaWTSLPJhtGQOxKDVnToJ9ssvnPLY8/26xWLH+zkPqv2w5CJZ/W9uRI29oOB3KONBu2KK4zNzxg/N/Qy4WnoS7Pz0jzRb4WebHPMJPmfj9xck0LLlLclP/APG2shoZxi8Pq7uxUSsOgxNi4hU30/YbccCSi7NSSZmSY7I91LezJ9wr2cN60REPh674DVoJv2esC3xUoC8b4gBJ9kAH7N7rtC5s+spBnYsbSfQbvLgc7ccvtWlvh6jRm9WD3TF8VrfuxBm/WVVTqH9dmQfOfvtGybpk55RH4YQN/1PDI3v38J3ulAFrwJzAGTg4fWr7QuL9WecTcmZRT1rdq2ZPcuRZh/ZRYp4Nxl1o2VU5j2okmZXlJje4oGoolg/RYuzfMIAPiMDegnytkKSchGV4vJXDn0XpqTjPJuNvVPXd7afcaO5rUmPzaKpa7X1CJcSZbTmixcBK0UEbJwkThjvkUJulzlt4NinkcnYNTOrvp7rt6RPK2ddrLRVFW9rH7/hsxFiFt9vqHYg5ViTktnrTLdz9PYWRzNL5PWfMhXw8jkRGWpGkQPB1dfR4lUcKHEHeF/HMpwjc1Z7OLMVk2Nq5u6RnikoPNqEkwIvUses1uiMvfqC7taIpBnsRvbmp0tan4A8aAwQyvYUC6G2vX71Ty0VaoRYU1/09UkPLQJ1wLhtnn6o3QVrHiFibE1xHAGun4RSBqoJzu6nrua/w0Bd6wHtThxFXq8jmoSkHBqwO6jlqMm/kVhK0QOGO1RWfAhArw3sPWPzXW6fEo6AgI/EHE2PU9FN7lLJ4fvAj3LvG10gh3Qx1MLfgkgS6qhwJE0Z81rIaBUe7e2/HU5BoRT1f+d2dtv7cC+nP2BcJrMBJHKjS5PZGJmjroTsqJMNDPf/tpyjKHxWbe7RTyxW8aJGjPoZLjD/3arHOT1JbFbf5Vd0JMT6+9bYqnwnTVZdh06SkBm3hZXRUpD1Jnr3k6f+VFUSbt3wzDZghsl9U54g8Qa/hIfoam6XwQxt+QX9puVLIl6fzJkr3CbnYx/wiXHefYgUfDpKk6SsKOyyjjVLFXAYi8nwfTBmF71U2PsHMWfHI4XXPmDfvlRNxVGXy3zFa0JhN9/aT853t7QD6WytCYsGd6AekPXtvwBf7HpARUlw09emGq96j4VGvG+bTN1Wa2HXrbZ7g2EVAbdMlECFUklHaEcIBGFbsezBSSXc31/Te3ZU2OrFlbkJxzD3i55dnHVwmrifbUNVIOE1Qtm1k8yBG7V/mXVOJiNouMz/yYnV/2mEAoGeY/cXrxeMm8mz6NkYXdT2u/rBriLYpJhC+f1ybEsB+y7pJmnX+pOvlRbjaTYpwY4/OBztd4YhaA9fkvOO+c7YjLTls6wQ4i2PVlhe/PCdKtGNbPKQzHmRqgWjwG7NaqWlSSxTaxVctmn7gYkri38GVJH2tw6CH2wOBwy//+T9Vi/pUoodrPSjfXnhheFIhdWRrpNZXGq7Y/y3UNkc0YlKY7FXWPrDmRQrVgDDusiit4UtqrRtG30s0DnO/Ni3ehmUqH7VSwxo7QAPdMbJyKtK8FV2fFnmmKptZgxFved174dN7IvceWcrGo9OqSn/9pG906A3vsk039pMpLKfGjPgKdfm9kRNwq9E1uqKWVCrC3o+5FC1JqV3wDDw4siCkrNGIkfctgWkcv00pWsXJULp6rC5MlUTc4TJ/GhiQN8PqO6b8VfxUKcbib/jCfDjse/wxLm+SHEqhVkNQggpmGJfv65YVTGw6Zl+W7/4q/p0hRrv5gz7s+w0uRPCjpOcE5JbA0CWkolg4p0KT2sOzAsos6qlqg7NmKWOlqxalbm/NDfSpHl+u7Cq9UeZhv+uNFZrY7RAwM4N2EjlBpq1cTKCyq73urRnUO+1ZdiVVJspwJZkskmKz/3YA/92j48UohyZcu2G3uYomVzld3sZeviiz42y3fmjudfwbuaTL5oq+2dRlguHxiepDel5BUZ0S7FbuyVkkpW4rQoVllfy1sGdyy41K0PrxlKH5hXP7Fu2jt5MNiDwgCtCZ5U3XubNfq2f0aLWZocF7797jIWwwuzupvrjTht5I7PaipX3R9qr+mGWAO4RuPoTXMcs8No2GAbpyPJYW7exF2e4AA3KtTZ6uRPfSI4qh0rqLPl8qEzbm3N2WuLiAs+OvvxY5ugUyjV3masa5uX4eng07/u0G5FYuU/qsgvR7y1rVunuiydXTO7rIdcmPAfPsYwR5pquEPAkKYiVSx8b7VOemnrMypXw7qF6inXwOjaxAKtc45lCN6Xnc/jFhkdwnpROXidJXdG40zYfGPQVw8EGfiPdVN4CU0OCOUCGK2Su/zgXZbYifTLXGz+T8GaplqvdBBhAh2NuHoxxJjmczoTKksHFl1KzQeuXGGWhFBccb8M75rriwdmogH9RXSRb5Wl4Yy5MVUOSu2PvR0nDZBEDwJI5Y54DQQleFvh3bMoS92bV6/9ZxnebJI3V0JnyWKIooeSBkdc7MDm8XadhwdnWximVlF3JMiWEM62l4Vw9KaEPlSwsbBmLLTMJTYK4sleUbvKHyn5Ut6eL3w7g00XPJD6bO8FfRY3djPe75/hK93SSNgX8uJ1nI2mJgiu6ZDanh5UCB3ndbwKkFKmunUWbPxK1SvI+HQo+n7DKPY2KS3cN6Ice1W9OZTsVJRQ8WfZSAGd+RgWOLInwh3NCmZl7ItEc/igugrWjm6VLzHpGfdacwS28bOY4R8xSTjJLqyimRtWRBczgJgGawgxzYSvrt5SixCMyaV8M5u2SPuwnqhzTlSW//PJE3uSreevfhYxMLLT43Y2NoLE8TbtXnG23wVIEUbE31Pm6z9RmQsH6HgspP94AYY2dPRtGF9+FpfP5Z6zbHc0g+0mFoxcP/HrrC6SDFFRaqCO9golpFfB2oBH7KXzpAjMpkBn9kTlfJm8h3j8mzoMkzUhZH7mbMk6vfo1GWy9+23fVZ8O1G8pPW0NHsc17btbodk+yCnGo+967c1wyftAkiJMv1plJxi8xJbBIqnyW0+3iPTiqynEuZZlz669aUPhRlTcE77LWYSAJ5BCBuK1pl3KKphf//j6tOanmLJdjBJeGixbW8u40O8aCj5Eh5cu94QKa1fjFyCwsvyyj7tJM7X5dO2TFa/CD8GkYwW9rv5R+d8+AzfOESzYCHzxntXs6UcGF2dYQT2akbKqUEYtlWeA8J5T84wpd7+bKucljV6E+K3Tc64DFkMEcjjAIl4OvQHrfmRGyLmbwLFaACb+ch/1Vj9bmGlxR9tq3vtdfv5WLzehHVmC9/9j+sv1VHWPoehG3/1Scftj+offqJsqKXgX599E6thc+3zVazMDA8dXfs/Nnfku67RPNFin6QcpHPhRaD1l5CHpKt7QsGGxSYr3auvcYvgVBmUNTwNtoCUuRKIGZoqEUHcV/sUd0NcjJIaRoQ9cg3kB9Iqz4He4s1SQavPz6f0xPAbm8GvBKd2GmXDWJo03uhoAOzc/ZclfPV0tVcQC3RMO6mmh22fjotC+IeZ6/hSKazd3iQwJJlYuo5++fNqGYeBjn3cedT5uIn8t09feJbB9mx55RCovnEai6kX3XyxXn0G0GQ3e/D2saJM/UIWEPJua+SgpSEV6XtzhBUCjRpzuLSCRchl67J3sR28U6t4rc/7OgDuYB9jWj1gSUP6/K8lojIr46Un9k/vSBcHvUtkRJXJOe9kCUWLTu2KAgFZDpZM+w1+MmhhxUuk4/mtZb/Lt2kUmflpxgE/wtnK7xCWzYqVR0Xw5+nP+xO90cXKFaZM/9oU5Jv6m8YXhalmBL75YgYqP06S4SmzB8icsg9vHABjuJtb/sTimKvvludOwK+d8meBl+XLN5shY0dftZoB0U7nuBxkvdrDdWIygfOfuls1sT8YNAUQgn2mnkfNmX1zkszfm3uuE4yB+fANYOhnPNYRVbUldPSDK9KFar4kSW7V4wBjLbPvz0WP3ZAGH/szNYbNSKL9Fosl5mu/9y7BXzJt9tCb1WqmMkuEuplecvDfHIhGN0nW8GCp6WqN8KlgivbfWBzi34xg/wKXwFshXqYmpv92nPVhB+EMHRm66tlVNFXzVQV/S3N1T8fxTDPAK68OBtD/aQ7b+Z8eBnqF+CLxb4r4QpwDRbg1usnyit4lOlVK2SsFqqKDdNDW/XrPOfGx9OBAnV1/jakwzU3UbnSH5817ulkfv3QTDhcbq2BuO5oUOcja3mMyzdTP32R6qGpRR91l+zXUoyr990r8j3KV6N9ci/BzsIvDctwXE9nNHsCoiHMV1eYl7yIxIzNQWrBlfQyx78LpX0VwyCC39RI9GTKH94w6xmPq2NsL5dLrN0sDE4CMDyacu9VrdzcV7sAkakfD8PdCTHMeoLrIe0fJ7kEYyheN7s1Mt9k06Qz2UwwTT/9xLmOxo+vakEiWX2PGTic1zlPDP2jKaxN3/aCpOUCB/ZqPmwD7adOjjkY1CMiap41IV2rJyTvb7PH+LTl07TqvZWbESRhDcQ/uAyZuHbgV05fMf5jyqZY2n+jY4Njj1jgaBnbrrckNhd8e7amjopHfDO2GdgkHsexaQ9zIM+ZH9+4jHF42ry7yBXrHaq5rD6RQcc+4YoLy0sXKe91zdLz7DIJbP000pdZhZl/jr+BGLHQ0RBt1FVMlpDExShZGF73MGGajWt4LD1apXwjlrBdZ9p5wkC2tS2yAFPiHdT1PIwqhAgwPXPtZGM++GnOF9vJXhDnN4bp2f2lLMy10B+wIr3A3Tw7GTx+EPy4T1HzmLZss7EXE6dpMt2FYvtT9MqWYHst354EqOcZgvp0+xiZpHtK5h/avIIigSbh/+wrE/hyVM+fl/1vL0wUH8kXxnX/cWfR1J0lQ3tr9EE+Hz5C2JcxG3Oukh1lrhvjpScF3tzY6ILqaRmanOXz3fXvLpm+F/+WTZ7Mfp3Gb2YezXG/9/B6DYBWp2il+/RsMkLM1mVlQfh27Y7kd36RKxatNrFWlPlRgY3Hx8MuCM9T+LMuKQP117tfN8fxxz7s1714mjj5/Fkj90ZbQBjdrFuBfWvg8hB/GFnMxUmUm2tloOJAmln+appgoEt4xeJ/Dtx6pJ0sqFYttB2rXzcZuOHwKCgoKFMiTQyPqtCLdaE53kvi+5eWMOnFursTKiAEdlPfj8HxEiQNDQI5X8/Lx4Cr6I8tH8L//oM1D3jRop8s3o+vxWmd+/u8UxeTa786evg/w9QSwcIiOzDsBnFAAAg1QAAUEsDBBQACAgIADm1xEAAAAAAAAAAAAAAAAApAAAAMzg5NTdkMTNhOTJjMDNlYzQ0ODhmMWM2YzhlMGQzZmZcYmxhdS5wbme9lmdQE1y0rkMvQgRRAaW3UEORFgjSexEEpCNSVD5FIJQQQkeCKNIh0pEiKEqTDoJIJ0ho0juE0EtoUkIO3znn55kzd+6dufvHnjVr7Xlm1qw1+31jTE10Genv0AMAAEZ9Pa2HAAAZ6ioeo6W+uv8gBD8BAKxEfS11i4Cp7dnQBEtccPd+jySrlpaWRiKAj0/9rRqDtsAbvZuJMpQi6gZDwmYadE+En7zxZtIU1kw17boRfcNF5GOsWwITRjFFSe8WY5GesLaWdv4bygQeHkLmNj4zZCzHcXf2x7UmDHH/clluIxBuk+MzcADBniAGfFpMbW3Popxh5uPsNUUfZZPlh81epZTrP25woO5RYxfQdP3Q2Xr9eJzm7/d9lTo9+LqAR1GDbJJS51gLgPC4BU4Q3JlB1rdz8Zu7xYmn4HFuk6LIFXOIWJHcWuEWepuQ0czzDqefDl52LTlM8me2zfoAoEX1c4ayzP/W7Yb0Zrv7HtutODHC9+TWWRB2jzDkCC0dJWhZ0jtFBNlNX6mSgheCRLcIqOCLYLTDJPCo/uKRfO+7KotVjFE63/WGSM4l1fI632TgsK1tfcfN8NEJXB71Q+ydeoY/Pbnuq7unSdVo8LD5WcOMrD2XV0nnmlOO+H7Jkx/N/LoDi7vs89/Vb0NkUY0COuv0aiFUkUpltjuvdXuWW/gvhTEDe3nKFzjwLWKq8mlI2bbC73Fl92hj5XhaVGOz7AgvIQPjNJnyMw7ilQOzkVhVMVAcIlsxkgoA8uz0cael2qSEAotn6Oa3m/a6OkPyRqmPOL/0Jv65E62D8AjUGOsVj3cuW+igMXVpY4Jv7fQU13P4QjWf+Y3JHRYB369t2T5UVsX7t/4qeL9PiNV9BOpzP5fgqux8+yWwmjdMlJHaT9zvh+89IX3VnkF2TpiDikbedf6wO3TvAnNU2TeTRmlwscP50BOJuGthPkBq7K1Db4hLKMpSDnsOlFcqnpL1N3mtDXWR7it4q8IutItGDl/cmGLgYatatwaf0GfCR3xFPZEPFbnOGj90/T5NKMEV/ZRGH/yT0bvNhvv9/s+jalY1qcJNrbLjKmyBSLZuCuipLo2my2qwaUfSYm9Orh7X8j1HxcFof3Ja1Jp42aGDC4zvoFo8eXqpLFlHvCfhb1X8+ceUhDdha0Z3ybTZGMD3giSLXBRXBOM9ntfn070xVEEQTfpol3bTS6jfCrNdCOwaimwuLO/sG9z5WmKl2KkRERxz4IyeMToHUHExmAklXGdhJYk2oFAazpTS07iOKkZy3SF5tXDqyNwvRGFpg79gxtcMZEPK3hTMpek6g2C1cKpIhejp1Wsqj7iCs7vUqRaZ7tK0pAdchuu75/2MWBzqmJ1XeM7myg70uFHQb/WcJU8tos1TVgwZeMoqSy/KDjwRXC1s0cgERDEzOLCw+j+4Q5XKgJoQ23TJVZ0vNg77RYsii3FyMnyaZajYvHOAB1XTmLK1DfIzMygMCpe4Cnc82kQGX0L/C8AKcpTs5eQWvcvQy4yXqKYzVSxNyjGCVoxmo9TTPg4qVjp03d3Kprr5SErWMIXCOfcyThZYFUB/VtQh8ywnmIx+rxdvx1K+BOWBD6r1MNF7sLAMPBHdJr/pJCWw0anL0vR8YNHYUS/9eQhPJVSuP88jjBxI/fhi/1F5dsw11eMOdpbNP+4V+cCoAFIXqgOx7w6d0ZkGaDMx7FCCk6lEypGxwd47uJpsbQWNNTFSBuFXjpXziPYUrXC+kx67yleT9ZvODy7XYbcYrSvCvWJ0Y0jZsK35pEVmtmoW08K2hDXhs96pFJOlak2XatmP0gf3GZbcoBRuiRwmkLFdUxNKWpRRtu5W6WE1h+G64hKRkcR33cDwjrznLx4DlCYO7xiTBv30jPMiMuA+2b/raZrRp4iAuHHl999u5W6ULM2AidI6g2ZfydiM/Q3vGnU5qTWM6ucFULZD4PLfZoaa0wJwLg99728SDXp4h7NQ5ZU8z9e8cjbGq7lMfIL6fi3EfDDPnwVY+On6RoFArEI5hSbP6qCS8b0LtKzALkQdEQcM16+a8FxRTv5IjG8kdu+beAL+3GFwT1PyP2zWpOyMg0XwcRyWLLOnL/2sBwtpQ0xza9y/fWjfdw7znlv+pyaytrn2fd3Xb3s9ZSAP+oUISk1U3LYoOvnTeVxNPvDbFt2WQw7WemX3faopXA8tbKy93aymdDmRUhZ5mJhY+b4mF2SzDcPui09tVlgldJpvFnAMiEtSJWS2JXy8FxtHNEGr3VYEHD8bIvsEzn7/myTfZ0DTY58uxHJx1ssWPrP07J7SWXBnJcIp8suaooqGaExRU0up5+5C4yRGTfcMTGLG1nX0rKG5BLeNvg+X8uleCBD4SP2qB7m99HyAU06GW/1Wh/1e+KD8pOzn2gOB76I1HWsbxgvST+zJp18pX9TMXvaThWJB7EJzWN1PicMeQC4dMsBbMbaqkhqFE05EaDztp4CUPSwwgRGYSIEz+jVW+B2YyMb5kgAbwq+IxL/sCrAYaRf78YEGoCZl4ZOgRWypwejNOnRzL9A0598mcbJLsqjo31U/qEAHdm185j6d594fB51fCVGoyAlSe4ynHPgW2PK9riQOf3/D69fVhgAAlBSAMCcAgIkBAIggu8ICAP/KbJsa/38HAMD/8ur/qPj+/x1hmvxqQ2mZTySxa1ijLPF42EzJUGEdrFJYfFibcxmoEFqW3ApqqUuVTUU9zPSnpqUefdntiMn28u0Ldv0QmygiY56TJEiIaBaadkVvoflhtgalk3QQYeSKw6TAC9cGKL+Pa4ZRAtItTLP4/SheMdIJcFk+4rmgvBcCazVKpaoykG8qULGk4DyPuk1Wq+mY+sytVtP1DUUhIjZI8ZmaVJ6pEkkH3N2RfdneEukIQmIL+InWc8kShCqo5LsV/fRF1WcRurdPTrFca4BGiBnfxpKMmU1MSba9hAdxnvOhgYnCGbJgdPQxNYaWXWLZtQoqGq+8kNb3zyTPNKcvaGB/N8ioto+eptu6YbYgzjbrBQ9bwjsy0+7sNS/4ALbp4H6mWze8Lzc+LqRSeVxfpu+q736JIkeyfoSs95rWTwY/EHfRp9zGWfkm2VSP50F8m5w6y0WeKfOKkupSeZ+U6/xb7HKWpy4r6ZXKad/MVj3KOXYgKqj0Tifpz1RvB31ul4/Y543G0cdzxLkxs+0iR2UmD+6hB8t42ExT1ZlwKTEEsUkrdcCWL438rFsW2Nfgj4zIfF9BJJtgP1yN+7OTxfHd9E2ZCVy1IC21xaflU/7TWpDmSSoL+TTUc49znqiQTwQHOFUfdBz5Yr05+rwuTJoo5Ub46XU8eNj2GkyKsjfPpCFBQsa6hM/KGboOcwtx90J/5SeDekNXb5muRzi3YoKkzR5rTIc7Cc+ZLBuULyBU2jlxSvOI46LvwiXLc1OGr13ySXD3OOKTeEpPt8/itKildbZGZAx+PwXIe4ks2gWXF357+1RraCR5ereQLkYBh5RmN0Fe8fpNFuRVUzOVZALaSmM/8C9wrC8hoh1E8L27uO4UJnWpmwOdIT/wNEmsZzSOqqG3PF4z8MeQhdQuGRmoddhbOEzRUWqGOM74BaPhMt5PWnGgiM0hnR4CtHGAZaRXwmCp96Cs+jot6sIOdma7pHHZgzFoGGk/pewofyjPxKE5HebUE3+tPpVbVqwpLNctk9Ji8fTofQrejqvIQU1q5Vh7enBaKMVYPL7AwZQRP2lZJc0MvD4I5mGDnUQQpzuSe0PVM/PuYGswzciXWZ66LvNiU1SUmjsOJcYsWKGLFHl1RhVx+Ch+5sFzFiaGBnhi3B7VHcw1u0Ghko8Hr3KwTfDn1//Nh1/+ZF0DT1HIBczN7h7sCGyTRfCegAcrY9B1e1nk/2w0I+tf8t+fovgXnZfNUqqlMyRUEu5TFndi/tbnFcSDPIJXQXLU6sa0cN1HY9Pf+OmvHb97tqvpaFEzzaZNQo5Etia32iIHU2P8FH+MqbVB5lXbxD/6bndzO1m+wIfAJUt41pBE2ijGrf5rEbyq4LnFmERN6FataYve9AIUW9qEI2oJN3c8muFhI2zyXX55+QBxb9zFvkcx2kdk7hoRtmSvtIw+rzhjpNTkchxkdEXBfxlRd7DA5DxewwayJ2qDn/eBfywqwO55UEbwkiQJtYT4OWtJxPhJBMbkyB30136dJ3QbDRGkeFI8jzPL9CdvM7VmDW6a0O293iYoeaZZpYXqBH6rthzKZs12/fLS4GAOP+4msEsAtJlyiBm2ZH7kf6O/eYvgREm3bVkh2DVN5Ph1LIv/yXxKs67/747NgT4Vn/u9L3Jvxlspdzm4vJgSl4z3Dl7HmbVldICbPz+psLjMMuOnpRZQTjiW0R4ral5WWG+fuPyZu6kJSvLp3uNDM/D35B76UIPucWBUCLEMT3PoKCmq1p3u9KqlS2QSoVqNA7hqDDOmmcO/hAKl37ehqoM29PTMU8QaGqgOeGX92uXcWC5yeU27TRtBhh+hk/Mz1Zp0T1VOH4YFbajZrNoeP4c7S6wliKpwM+FaeGVsbvfYTjqYWKO/KU1vMLexrWtYRzqpGaeIK9W7SmMMH8OtmG73Dr4x63q3U8914HoCaFDPYNUErcJ9dSfxTyXvxsWFlrXLGqghxdYukq9Ry5/RnejD7MSlFqBUbWH2d2wOU713Vh4pUZo8Zb/TqzxHzLkZOoRxxytpCSEob7iVhsAK7DeH9FxEPseY6b9GK588DfntBnpAAPo6xR2c0z89MwmN4mabXvcS/1ZIUeV4GyN7+slQw0/xRE2K53Fu4fuGaGUHlnhQFWuDeBU/bn3ri9fYLn+c16SgZ0N11STGV6Ex2QE/dWFrhx9A/lD9Prl4iArFfqhQsWZs9bTpbu0lk8GyXJzowd1/ISgjyDpvc9QEdc8bn3VjUFCZDziYeSw0RGJ6BsJdioprEM32DtvyfcaN0cr1i1b9vag4egAe77Qnx5PRUi9ctBd2HDBLjw+1uxWF73jpIob9IjAQVYKwW5qV7W8/EDGlH517jnh/enlmH7rjHYplUKWR6hXMH5pbCqqI/FoHCpiuz7J850L5fyWp/1Px/4Pgs44aOzwbTUQNW9jq3V3ncSiMPkwLgaEZktpktFC9Xuy8/G4pM5IFROz5RU3ipVFQSEkrvCL0Ueg6vwpOZ11gu7BINrnrIR+r99cr2C34Gqs+P3xlKObEr/su54FrusiB60fxZMsqE3kMcFISVCh7PStNs8quFqNjwy/mWtmPnpSx7ILEUitOKCm6btxgsFdUu+9/XBM0PvcbPuI9rqK9Wk9hL2HnmpvVVzlwHhu5+oGE6HuMKZrfr9hKGb+yCoLxECM+C2RvzfBVb6bmnCS34T9FKfsyGM5LW7g1qDTvQBmMXGG02ZWyWU1sh5LSvZ+pmHGlIC/OGbx6S6wMbIpTZdEYFY2YKnOKz3gZi2/iv8riVB8v7Xqs5f4ZdSuoFcGV3gd2qe9UFAjIjfFCNFf7Rghfv/qee8DudvUsvbxVvUxG6r/1qi6aiOzYHWvMb1VoA/BMMssn7pSVPvCL5hDM+oEfhGTDQNyco9cubeIxJ1f2cCvuy3flCRRHJHbVmM93Svn52XlAR49Thi49Jth+Lo0fz/bTjpPjO6d9HUbuYaYT4K0CIPC0DFm22w+3qvpa+aeGRAVMXNtq3Wk6+nQaYJXR3f29Bf/iFUHrVAv+11CFMOUQMzxRDDzo5HJnIKyVyrcBbpoUe0ftKhWfAfcjxV/s7Pa+y+HI3roFUdAqGSxDILhG/QIOjxjbxNHrzhqkZHEKlx+G5tKho5VC7RGRtFnzlF6jjaB61I+CiIwjOjiDIQeHZlAbejBHu85A/DZwZqlqGFqeNWWlbs2xz6GfQkvTdcMhgqznG4/1jn43QUjACkHu+4EiD7z9hn6g8imXW+wJdGgM1vewUhYeGelsaklNRUMhTNL4obVz3Jemwg4etPY/3S27d/2kj52rWsMyOxIduPjTNd4Invod8OSbKpyzDWCxHWW91HRRQsf925TksGwpFixMtUieVbB9EeYcKxqSySu8BEnTdTliaQNknXf6R6JBXEY+iR5HlM6jUZtDjj2VPif/sC9TXf+scE969+gtqHKThUHNnyVcOvEEliE1sSL4ettdbGUIMvvz2t20KxcSf0EJN48g0wslCza+5Mf9msQnth1VM9MvcHiuFVeMf7JZlJUbSeOS5Xq77+y+1buyMjysAB1t+SCvEZ5zEroFiVmZs9ntOhaipHhLXFpb+8aYxNqlAoXE8mXGW2fVS7/FVagalRUWfDQ1Yu04mtNo3HIO4JvuVcwDlEffb5EWbdI/u3v1uyny1s2yqhn1EEW2ycveqW69Pnfm40CxMAh/uubk7Lw+51BNt0d6lXE5Mq4LhVpFo9Qrsy5aj2NIHNtkQTtna+lscof5ZqbioJBJ+fFk9+sLPuO62R2uh7R3qDphS557+qQH1TR7DZvLYjHMmtz/mSRJVfK7cU9R/t2aKkEHEFTnuKzj/xO7D8SdBBNCOZBcQ+CFxr/tO21iNwqiPL+L0nX6M/uevJBZJldcD04I0CV/exS4JkRKpY3KTVVZ0aH4OAFGqeoj5mEvjYNoPCL5GqnLUkDmtV0fsoP8hBmjnJulMjCS5vK3kJbUj9fQFRR/Aua6lUvwhc0+Z/BKlhcbz9ylbh5E3VDfe2qgtpXCrWc4RUvlFTd+9ELVKmBRm0BcZr5hPBzM/Z5mzJO0W9thZ07Od/zwTAFx5VDseLED6wGeh/OIVLONaZqC2NHG5lx1TfKi3B8VxbniqcvuGs7ZoFLPheCBnraDE/pWz6AnzgU9hR4yIvfRv7EFZuGHrJPWrTMrRhnvXuZSuGb58gl7kQ0MCYGjBvYzqUeyi7kDfQd/VKnm6lCL5pSE9MhNPZBp9lWJWILEC7/CWtRRDRTIjtrsoBE4SvVJ0SabufO1rHlpjXaKycd5rMjr5+5VOnFu9You2HROwteg+SdDEfJat/HWwaqPmQ4cfRx+QTMWoWJHhsW3/x48/vJlPjKSLOtc2z6J9q0lLC/rWv0oKfTb7lm+xR+7jKE0beROx7sCVK9LVf/uNYjDwCkLlvOlP1Ps1z4eHrawjeyfrzb1f04Cw9tvvdZWFLir4imNEfvobKm/Kcw/WItA3pc9niVJodlZ/xYp7qaa0xuAAyZ2rLxMvNxL1I2JOxxqeYHK0bbAd9aG9ztLdeQDJ53cb5uc40Q27TMC7bu6NfUJV4OL8FABWxeT3NB0BceqfzhJopLB97Nw+yqbedbrLsjWulcNKxqXRMWen1Hr1v9gamR+chLt4cBp4p6Zu2DW0Y1OiRZ+h6U/osxa8zDhIwL9l9tmXQtsQeBml9QHyg1D2USvcqXMHSAJ4Tl76QjxMcRNbno9XmNiX9y2AWM65Rc7ALB7ss7nEXa4+3CBA1yUwdz7NPyHk9ipJQm0VaAWoVrzHxSGezmY9S4uQVmleFizUY8mHuU8Omxx55HVOsat8cb8ZwX4eTV8YnZtYRPPxLEIm9GqmxXHbor7SoTWKJ9a83hJvasy0TaBSI1BUp41zDpD3K3cUzzxPKx8Ca1FsQMtTZzr0eh8zcAusqohwRIWSya+VL+p0B3p8hLICvBvmK48ktOg6QKrcjlFFgq+H9oxj+xX3XzJSOIcOINPrjbkF4UI8UQ8jVUmZhZa8g5QeCeSRanyzvXAJxygn1VG4aPmHELXoLbW6yZeBYa2TbP6uS2ARVhL9plZ9G9g+YoN/owkE8+xGig3GUCzCYh/7Xxz9OsEiNgQAHBlkWK0B/+zbhtU9Zrlycg8fMgss3UcVzwEzKssG48/oc8U3jfylzI+fv4snzQfEBoS2wqvDh3To5lSQ8cGFqdUT9V3jL7hhGHnSQBja9kHPgfupoCro69tolWm4RTxH1BLBwjgCpRUORcAADYYAABQSwMEFAAICAgAObXEQAAAAAAAAAAAAAAAACoAAAA1YjA1NjM5NmRlY2E3ZTJmN2QzYzY4ZWExNzBlODQ3ZFxicmF1bi5wbmfrDPBz5+WS4mJgYOD19HAJAtI8QDyHgw1Iegt7LQFSaz1dHEMqbr29uJH3kIFA60OFVEYPyUClaQ6n+GY2M66YqxhxwHa1IcOkYoXjRW92T2D898h04/7qjXdbBGYZrX++uNdySvatZ5tVjoAMxgYUGH/e8MyLPMZzp3vrP+6+SeXbTp5yL4qtO/yWwW5uovvp/F+vLtRH1ZR6S+tmVpWudes2v++YGem7Xe5c5GXdDVtCLocKXFzie59J/aRr9GzGIH1j42yePnaQyZ6ufi7rnBKaAFBLBwisWxWX1AAAAOYAAABQSwMEFAAICAgAObXEQAAAAAAAAAAAAAAAACkAAAA3Mjc4YTBiNWI4N2EzNjE2Y2M0MmUzOWY3NjAwNzRlNVxnZWxiLnBuZ1VWd1ST2RL/vhDYUAIfAoLCQkKQBUWpEhIghOIGFNRFpAgGQxGQVYOIoEISly5NjLhBIsUuEZJdRIoUXwIrqBuKB1AMICWgFCmRKoQXd/94551zzz33zJ2Z+5uZ35m5mYcPkpBK25UAAEB6uLt5AwB4TXaOQSjI9m+di8EAoBjp4ebsk9A/M0B/5Lv444v5KW5hoX8+x6vd/Xqk2Ijtvku9z8gtiBmJVlc/bZOpU2F0x6MrrIWKVkej0VvQWl6GrIyM6C5Dl58z3Fq3vLlTL35jcPpxfEnsusP057qh2FmmF+9bgzRhI79/d9PySJGEHUsoabpy5UrTFWmTFoWi47dpDajcvfpybK7EAlpK9xrupTbJwU48YqybJF4Do+LNGrb6puIoT+XkPtJB3Lx67ycLrAOry84XsV+rcJESwBqbA+BhPGmTMv/08Pt1f461cQ+J/IE/QHmQDIeueXv+JUYu7aXEo40L4vn9PJPseB4A81Z6lU31e7elyaRl7MQ7PZrWA3wYAJq2hoX4b+9NbUxl6anZCyapR3VGO0H4PWvju/xpKj1hh95uuHiUZ2mmNrGmACDcTU0mUosEb8uaIaa5IJcazBIXgSjUfVY2UiLADP+dpjt/mT9K8bB7i/2BSNzvXFg8eoSslK5siWM319yRVjX9IgOS0Z7Cs+MSBqNr8e8L/MwlU5xtQ3YyKHDxAs9qNi8xIKM9AsedumnRilWXObHE/STStE3J2z4e13hLUl/5pAQu8ZKHruWystvjPfRVz47ZG992fr9ML+wLpxq9QCi1fWweezj+4Yt5Soey5ePB60OXvCX1a9+kenvm5WAWW+QWeprnXk7oVVbjfuecx0gr5j7xvt8/EPf8nb6YlU9zB36mEhVIJ06SL/4aHXiz5wsxgSAiRJL7Mjm3lnSXnJaSYZ27wNVTkLHYMX8RmVWVO+FYkM5vmAt5OWtQbmC9JIB1hoKfG3C0kOcj5eitEUibaae6djUVIlchjHo4LZDds9o2x93olOUzwrO8NaAjLmbvAkMCg64JMxreiknH6AvdhiiUaplW3oH01ZXJmfVHnHr6ucbM/zAYdim+RFrRHyt+CTiHm3lfhRysOR4DgFGItifU/LwHABwOgCCRuII34ByVw/hNaI5YCuEQVI90/xZUKZ07768vjCMwGBY+RJoGYY+D73o4wfQCPUkyFADCXNCGFfuO9ZAC7HW3Rs0oHkq5r49TgKc8KPV8nffMNj1ZxhFF81R7QatQBYJkdcEE/Z71dPB0QhbNL8HI7NFEEg5LJJrAxX9SO6Csp+WZgiL+bspVazl4irencbqu4EhdcY3N0FQ1eybuPnYOBMs0mafye0Wi+pVLAsOKpLrqmIDG1q6670BMZEA6JmgrQlai+rNx8mrhv08+3hq1WyWaH4jEjnCC6TZmSqO3dVGoG79ZYURaz8YKZOlUHSs4ECcvcYxQgMHus9gFr6v+IbeP+d6m/GXf8d7lY2xdBOJ8S5gPoWKR+C+/7/LQJVL8h7orDKKpyZGFpOsR/Icyk9myX9V2TS0fYW9DIDRDrGzfdGAHh36tVd88U6lI1jNOTN7sjWfjEAgM1uSt4Cq7Pa4WYrriXk/lUof7Vur9Upp1dBRhLmdbxt7wjBz0v9N9lXRQt6m+6VaU9NiyuGSz6LIZCvWVfPhkOOLCGJkpZNmYC/F/yN13xGvbHYGgS9bGEydNbG3NhPhbhxKPZlVVmsInZqj5VXCwrCa0+++RJ9cnN24Y2LlCUKR8+KRFVlV/kndz2ycRkVhKxUglFEPvDekhtjYC8fSHsfI9TkK8dx455iQKdQ1c3YC6VlA/OEkth7Kb+YWywHeh7GOt5oQinv+MaZ1tYt8qg0E84vBzz6EA5OJvaBQKQCAAGEy2GIwXNePOjCpBbB1pEHCHwz/hUc08kj4IHjRGOSlz00IF0/kl0w0QVKp5vVd/1WvY+vKYOvQxLKS7iUTrMx3AqMFgGLzJw5N5DgjEVx/P+gHMZnrDVctxeRC86lznMJulUkOSjlOLrV2JDG/PcscFrJgZaICsItEuOGZ316FRRJLnsctjBsL4A7nY6exg7ZtpmUIkCO53jprJp5dR5Oe06xKnKi0EhTJVU+NRwR2ebcNbKoYW76+xNS3mX9XCwiK9mlS6dsifTg7RZG0YTEWL6UEJ8C+xF9uHeucEXdztEPldbNMadp6l4Rtus19ST2h7Jzrxj1BevE6NFk71D1lwOWs608Vnbbic5lm9id2oF2057bW80qyLx3ty1qb4247TBpQlf0lbhQFExiDiVeuwkN0Xdw9iJuO4nEs3Evqh4Incdcls39n39oEgeGmnsYZE3PITv9jFM3eiobJn9c9R1jP6cmuupZmE/ZgBNOreCMARxOI943E/Tq40Tt5/WYIngWDLvVt91Q7J8x6CRmZ34ALWzgkEI1vv7eVGx9HuxSVmZPgko+ifRXB4qeYNumrsDm/5cXLEDhQwM1/75HVelcJkeIDQkwhYoZZtW0YON8lvhh1UIn/c5yrzota2tI6Ijv1iUWcZtFZASlSHGC5E49t/bZ7VUMnRhBhMxbbZc/vm0hqsrGy8iUC9UtuQsiuGkyfypd0ty4fBLEbkznlpu2IMlLOe6283RQGO2szPlH2qOQ4OLZ1t9pPtfBiMiDaOSNsxPJ9Wli932hXDVQ2VhzO8D5eX5S+n/ihQyQkid8A1IEDJMgqZI9IhnGHNLO4/aFosC+BGSDfB5lyEoLPNsc4pPKrx0D4iYAIPP3bmpIiNHbAPPWd0tnto9TR5ZkoXST0VakUwezUwP2sryhgqyFM3fxTfpYwAUkt9JM1fVD8spLYKWdNq/zQtBnD4avuY3u0FnxUexAzFPU44WmuVvQUC8KFW+DdItdQ+a33Z0NHuTQ9/KKDuH7JhvLU20U75wJcMEwX6qxWrMe88QbBUkxlDofhrDJ6qVQ/eWLt7UUBrkHmWTWLRYO0Orhs+9ByKG3RGbcgpk7spWPslDAR1uixxu4IM/q9pxVXbTbUUeFY7LmwBwU85rOxXD6v12yx3kpSdo4LZcRcEfVFJnr6O22wDicAl8/91MBUy++jxOBWauXi7zG7g+5CW5Cxj0/3Zi318rkH571GKCOC4mXDn8QozbQjoD7VC9y0S9nq65fZ0qctCdVmQ7Kl0U5gs+iorUSCxeNpQv4d5/LmgWlWF0Yt5Mavt+/VMx7JL+R87YyfzniemyMuU9rx6mcTRajhQf1Fjo/luzeuW/s/JX2RfL8Bj30G3SpcTv/0XUEsHCNv0qnKYCQAAoQkAAFBLAwQUAAgICAA5tcRAAAAAAAAAAAAAAAAAKgAAADBhY2UyM2YzMjQxMjdhNGZjZjY2NmE2NDg1OTg3MWJkXGdyw7xuLnBuZwHBCD73iVBORw0KGgoAAAANSUhEUgAAAKEAAABWCAYAAACnxvYXAAAIiElEQVR42u1dfWhWVRzebPOrsdTp1CxLczLFr8SWmYmUDJE+xEz6EAkRybAo+6CmSSUmERIxxExNRoiYiomZhYSJLpO0UtskQ1NaLm1+pbbSufU78bxyOZ37sfe9773nnPv744Hau13PPed5z8fv95znl9PS0pLDiBY575cXcD84+oM7IXICXkf4lbCd8CQTkkkYBwnLCS0OXCJ8RBhHaMMktG/A3yS8QZhJmEAYQugSc5sKCTMIOwjNEiHFDLmIMIBJaA8J35IGOYWLhEOELwgrQdTpYqmMuH19Ca8Tjija+C1hNqErk9BsEpa6kFDGVcK0GNuZSxhNWE44J7XtH8JGwiRCOyahmUTcE4CEszVqbwfCo4QthCtSOxsIlYQyJqEZ5Msj3E/Y60PAeRq/Qw/Ci4QDinaL7UQFoTeTUL+BG0ZYTKgPMAO+Y9h7vUs4qdhKbBPbCVPDPbYQT8wYcwjfK4h2mPCj4ucfiL2YwTP8WkKj9E4XCFWmhXtMJl57j73TGcJSwihs+idKn6+xISZH79CZ8BShWhHuOU5YKA5nTMLsnCKXEc5KnS6IuJkwWT5F0v+3JfyB3xOkbWvhNqSEsIBwTDHr70G4p4hJmH4H9yHMJ/ys6GCxBD9HKPZ5RiUCxB0sjwaIL+pYxD/PS331N2EDVoZ8JmFmmYUT4lBBGNyK5/UTz0xYirAjYSqC8k1SH54ivEcYwST8f3J/PGE1cqrOTvsLe7nxUWc2LCFkL8IrhBrFalKDz3olloT08oMIbxPqpM5pxkw4I2mzWJb7ewRmwVNSfzdh1hSzZ0frSSj2cNjL7VN8M48gp9qXSZPVMcjH/nAD9ovOMfiTsAr7y1xrSChOrTi9biJcll76LE69o02M31lAyCKcoFVpzmM4efdvxeHoMa1ISA0aSVhCOK0Iq2xBvK89k0EbQg5AjPG4gpC7EZvs7PH392ArNT1WEoqcpsjLEn5yCauIDEcPHnStydgG2ZcqZGPkcM86woNyuAdqoNQe8+FISShyl5Csf4mcprPR9cjpDuMBNvNejMfYnkReezhUQOckKVp5Vkno821pRI5T5DrzeDCtIWRvKHgOKVa5OhcR8d2hkxD7hkWQpMthlZ2Q1HfiQbOekKn9foOPYkkcPG/PmIQ+J6ijkMn348FJJBlF5ONpHyKeVAkqMo0lnccmdAyHVRjEgRcCaDiPy0Jcv6h6pUN94oyqbyU8HmVUnWEECfcHvNMjIibdlSR05BdrFX94AFLzntzhDBflt8yZ0wjHbcK+sQIK8HudqqfUAya7KC2uHb25oxk+JLzDQbD+rVklUw9YESQIyWBkLXeMNItvOoYR6syxHKfJIiYhEyKu3CyvPAlxYKhAqnAO9r1lhBvjFsUivbVNkf7SRu3MJAxvsJ9xCRFcQbyqGmnFxdA2to+4fV7pr4OEl+NSOzMJwxvkrkigt+huBeKR/rI+LpuE/dcnAQg4V7P01ySYIF1WZKhWRqF2ZhKG61Swy1QrEGpbN8KzsIlzy9WXMAnN9qJZZsqM4nMZzGjVUlK8aL5R/NxIKxBciy2HxfAlG/SbSfGiuVP6/FMbYnIwCJgOE/ZmU5XsNnrRTFGFWhxhECutQBxWKYdNu9NjSwcH8aJ5FRv8QsujAblYAZa29ovKJMy+F02PJJiQK7YsU0C8K7re82YvmuQQ0u/wJlaaPuxF4+1FcwOTKbT+HoyVpF7R39tx2Cm0noQ+gVj2ookuoD8BK0yjotLU6ihWHp28aM5BY8deNPEQshMC3jsVe/A6rFSDWvnMntqQ0CM57/Si6cBk0IaQfpWmxArWzecZtxJ+C3IFOC6ZUurSFHvR6B/uGYMVSrYevowVbbKq0hT97DX83i+Em9iLhhHG2HaEnGyr4kJcA1a6kQ7yOv3Fa71mTvaiYaQz5j2xkh10qTS1RPHzvW4n7kwaUuriYcdeNMki5HCXSlMq7FAJc7PhRVPCg5NIMubjspafiPgzuY5MGF401il9GRmR8ZEAM+JaZ+zRz4vGzeGdvWgYbrzZHPBOz4rUxOXmRVOT5NtfjLQJ2F0hlJC9afYjNizEEwOdDgwPsBcNIwQSTnIQbD5y0OPgTXO9nw3IAnYEYMTtRSPqvn1tkxeNDaVk2YHBfBJ+pXBZmAOR5yikFfNibiMf7Cwn4cwAJ7QmJNmrop45IRK4iFtz5UkW6touTWoMQETfBHuW2jc/DLkUk1B/In7sQ8ATcVUboH/3NmSYjqYrl2IS6ks8Ly8XOWY1WIP2+smlNuJ92jEJ9SdfGaoNNARYgkUZ1TKT5VJMQn0GLYi/34cKedl9BrxbL7TfTS5VIdcDYRJGNzgFcIkP5HRK/z1Uuk7wkIHv7JbHv4p+EP1RwCTMcuAZpQlWuZQ83QClT77L3/+AAXvCErnUOoWi6QJCTeNMC9Tr3umlPsWfA7nf0+88T5hl2QGsCO+/26V010JVHTkmYUyda/vVgrC+rIkmoa3LjGnblkSS0PYNt0kHuESRMEmhBw1DWbU6ipU5CJs8QroF9ZsgbJ4atbon2+mosbgIlch0lMHpzUgvsGXj5Uo4MW8cIWMtVaGtoxMjNkIOJCxy8Yqshvq+U8BniTqCd2WNhAG87RIv1jScjBmXqqDPXkIlhaGhktCjWE0sLp+MSAiZVqkKRwTkd3HjLiMS6ux3zIickLcQ5rlUUtifsvyDR43zs2OEm1tFwgDO79eK1fDgJJKMzlIVZ1xK+ariwMWeJMykWA0j0YT0mrBkfCcfbFIPMbYaEEM7QhYjxuhFxF3OgHgOkt2qzaYoMTCEO5aRBhHXB7hi8XnKIk78wVzHsXsNwi7sqspIl4BdFEooN6z/LxQkTizsqsoIkYSzFKE7Yay1D0brSyCmmAbZWQF3HCNsEk6ECGIMXCZ8D7H/Aiq8x8X+aphrAAAAAElFTkSuQmCCUEsHCMSpu6LGCAAAwQgAAFBLAwQUAAgICAA5tcRAAAAAAAAAAAAAAAAAKAAAAGRhYzljOGI5OWQwMTUwODBlM2RkNjBiYWE1MjUxNTZlXHJvdC5wbmclVglUklkb/sAvxV1q3DeSRA0Tl5xcR0xzKdRyylzIJUWb0kJNk8mFFrdjKoYWOppaTsuUYpprqP2iqSDajJNmuQwJ+heNCpSC64/959xzz73P+5z3ufdd7rn5x/29VZX0lAAAUPX18QwEAAhFtk6Eycvm9TffIgBAEe/r6X4y7f2/0xmPx/m6rxLtI46NdXTgHQ0tWh2JyJx4dMzgeTjcr1U+wdNHpSQPvhdukt1HQe3lVqgoau+1MnlN9NjXG+qZp7wwRTEds3hvicY1ixImVCdK4nqme8QuA/bnFqQbQotlhs6q41c+aXE2YxqpNlIpljY6Wao8GK12c4MCnbrwP4P1Rh5d6Z0nxtFirwE6lgg3xe0veYPkZm5Zoy1e3yvUGrAC6zaQH633W8LUcw25eFPzXGZOowOuKQ2AioxNNMaYt5fjHcLzhxSiwtoxwy0UABpYMPSu0fyZ4lW0jWN11lZwu82t5kYZrMz6Qrz0roLuWWHjeI+OX1Q7HRIDQJ70x5xtP/BMPXe/jcVVC+fkS3wBgd5/Xw7mY4dCin+p1+TyiQ93lz6Iim53xQnlAA1K6PGHfNJtP26wKeoRc6XRZVjM3EFxXgu+q0kfM66wvTa2Gq2mDFASLgDzOWDe3Nu0/IHYtJtKlT4XOTZv1ABgnRZVUfpH9JlupSddTpMJ4dpk8mVlFmNKe/Le+j4OzYCdoSnulNHsUT+L8usLpeBpO1ScKJ+uOZ8CgfmE4bz4IbdzxfG+CeETtS7UwJGHuA2MkXdqhVFkO1gnclt7KnqxHinubJ1/Ip30kHRHDDlG7Nm8DqgwyQe3HrlZLRBdxwnhExWVAvtUytK3yMxMXYLbW4ziK2s1H1NocnLgcquVuJPVx/1USM/oEH6dKMs8AaztQxQicCxn3I+8KlRLQXMqb4alWga3XM8RaemQySqjNJVhQWj5pRNVCaSXTz/50Ja05WsC5AIVWa8YDRyS8UYknOSMX7grj8We1xcOvPTkeUqKvkE1KCNk/OzchxDjHONgOyzWsheLzXy/+1ZSpBCrdgVfZjY3LacOyzvSrkE5I9V6+5R7lwQIw7g/jytgsfJXnQQVxPxvgIYGAIIAJMr8Uv20ppHi7NcVPQRCxRRRldwxoxKQ7axCAsGb//l4YtFNemrm1bv0F5LLM+8kZDiaTH6jdftP0qCwJP3v9tQgQtaMRcTinerIaQBSq1VaHvWLxM8hJH9oPepYsFZsiOx4j/tjDnd/TnMZGJkIryp19gvKzea/vZUiB94MPT6fzedmL59ge3L9HK+lVdjvgLiHvKmGQu45U1n+LOiaJG+Wj0AeBmsx69Ti1Rc4J2Nj7Mxze9eIYbRz/9dEM6dJmPR/1UqTijfGDcw/OUXIRF/X4etSotMsvyRM5mGyulGWStHP9BGIv6/bHprSbuWjS2JxRQvou6ZRnfZykGuhOFR2f5SHAz5/aLIRuRrEMmKbC+ShUA7t1vCjlqD538Pi0O4kpEt5QJZf60UE4rgy64VLQJMjIyzf1zFXlN7eUxnwPFaGFwzRGFttlWmzY03wCH8WnaO6nqgtXcVf7HLH6sy4dzhNUe06/E+dTTKJI206DOv0rm6GBBMK3bH/LabhtS6qBtyUK6OVehTSvyUlBqV/wUjt3dqi1KGHt3cRMtOsGaWrFQdvBHY5oCPeXs6cGRupk2Wjx6a8ojatM7eg2ag+ncE4kvqkBYTU9kT/xe4Pscf8GqMDgk43/iIljudbwaXRkmcpsvvG4ro/MNEltvQLD79BIddGyBv3B9qa1XIwIXYaGjo6taLiO5GMqjZMA0f4lWA0QRhXBUF5o3XXKrOpQ3zkqzaeUX7YD+7YGnvEHmbaBQgUSiYDCMTOgMFUihUgi0qj7d5GEEiOHuVA4VUeu+yVesfOvnNXjBSxOmisqN+7qpLtiSW3UvAll+K+26ycUB4d3luoXAu4Rs0B823qVZ5MoefsX2xX0ctfZRQQXHM2n14syULTd2217VjJI7TLM8jtIBkDQyDOh9mB4ON+3u105Qv/GEmTy2oMBtt6L6acVoJCX+wieF1saptGZu0/9Ikdu/l2XAUCOW+jW1283cAZuHahWHFpaCCPPdcnqxIoVFYlGHXzn6oVtH6zIR1Sd7hzo+h08HfnMUlF/pOUBycrbHRpEy226RyG1Xf4pFpK+uNc0pkC5j5BDhloqcGNPhePvhgWrFnPyr/EDHcN9jwYBvUvdO0CdbptLMSdWtn2XPoBfSF9wWuzMApfPHvliORM+99OyrA3xu7lhouqYUyFMhpD+x7bO5+ux1tn3K7ezrXuf68EexPxXfsng/jyiRa7Z58rJzS3742/i5vk3/GCQNYOoZDM08npLDYXZ2ruzXzd2CB63pONCT4GgYB8O663I10QzJ7xHatdJgjMEICcja5hwyjpTNbn3SW2BknXUvZokGNxWivLR+vi+7I+/KoIw8Zhg1YlqeMKJiYIoAoyOZ1kLWyZiuxxG6Wm7T+GBaz6ooOKPC3ifIw4fitS/zplGHbCO8ONu51hp1L4gwa5QHFQYOiBZNd9HBo/ggU6++cqWDPD3jKo51wVCNZoUWxI6LnPjN+F0bp6FghgU7v0afI53pLYSBqL8+d1iW+o7bjZKvLFeCAj2NQV7RwvJRjAqRlesj0o4iyfbEfiNDWA8zttcE5fj+QUr65eugyDAS20y2qFU2+b4D1uA5OztviL0V+ZChLJDVs7Sw5nhSqLrnHrTQK/tJsMyPpWQkxOc/lygZTSZGaMtNpT4K0s81AzrMxmKpMin+tS25gPiXEd0GAsIEv30XbXR3Dj+j4e7idhiwl+3fc3i/lc2PJQ3tDjJGR0msOXYTtUy9Msdnnph15PCKRGq3Q025Q7SWTwP9bXk85ntn6XbE86Fh28Z6U1vm+JU4zZL+4CQbLsTZyv+ydBerROlzonZRGG+qeWdSLEzPAcr7UoYCNrICYwuPJKuUFDHy/+XclVtHLnmcpT8yS+z52E6ZWQDQDICcB5zY+FoplPdYtjj8/AAubHIqjo2Tl9w+qw7oFHu8Ca7eu2B0ap8WpLakmJ45v89KOZnD9eL2w44neCr08Ntxp5f/f0+o/bG0tRRWTAmpg47upIFZw8dtzJ8Bd/zVYKcNZWhq1YwUlmeFkFHfQQ4dXpnqyy7kOKMKAqV3NWsLs4uSNAJEiqvZMtVwPyclhRfbaDwnxGWx2eltLhqgFUQKSZaebqpiOfUv9plGj3dvTfN9uL6JR9twDfI/6eDYcjr/8PUEsHCDqVJK+RCQAAlQkAAFBLAwQUAAgICAA5tcRAAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgICAA5tcRAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOWa/W7cuBHA/849BSEcigbIevktKdnNoQl6QABfroDT4lAYB1AipdWtVtrTh73uXR+gT9EX6X99kz5Jh6S0H3bieOvksGgMrymKQw7nx5khpfXsm82qRFemaYu6mgfkDAfIVGmtiyqfB32XTaLgm5dfzXJT5yZpFMrqZqW6ecCtZKHnQUapJDiKJpEweMIJTSZxSMJJqBWXLJVRGNMAoU1bPK/qt2pl2rVKzUW6MCt1Xqeqc4oXXbd+Pp1eX1+fjarO6iaf5nlytml1gGCaVTsPhovnMNxBp2vmxCnGZPrDd+d++ElRtZ2qUhMga0JfvPzqyey6qHR9ja4L3S3AYExJgBamyBdgVBiBUVMrtQYia5N2xZVpoe9e1RndrdaBE1OVbX/ir1C5tSdAurgqtGnmAT6jIWGYSs65lBTHMkB1U5iqG2TJoHM6jja7Ksy1H9ZeOY08QF1dl4myI6Jff0UUU4ye2YL4gkIhpW/C/h5mvqC+4L4QXob77tyLci/DvQxnAboq2iIpDaywKltAWFRZA8u3rbfdTWncfIYbO+vJM7CpLf4GwgwDUs/c0sbP7EfCh+OB9Z6RZE9r1/RHKh1VggaxpzMGnWHsdNIovKOTPspSNiqlYXjXTio+YKd8HN5RqWB7hoIu9+s+d1Sy++z0rHcaff19aAV+qELJj1B4z2J+RONsOgbLbIgP1C6s7OA/nVm1NmJYjERsHZ8gAdEhQ/BzgUgMRUgRxAMiAnEBVRIhacsQsRAaOGIoQlaOMOTCQ0Twh4duMIkEDGbvhhCViIAijgRDxEUVRxBLyEUmRCllICEEEtDJqifUDsEk4hJqLEIc5miDMiQgyKAj1EE9RYwgZjuTEFGJpB2PcBvsMrJThyEpkhhJYgeEuIaY9vEM8hFi1ho54Cqqdd8dIEpXerzs6vV2LUAaMtIu7/kMdZAWn8xKlZgStooLu5IIXanShoRTlNVVh8ZFjPy9vFHrRZG2F6broFeLflJX6lx1ZvMtSLejbieb1lX7p6buXtdlv6pahNK6xNs51yXZu6bbWUOF7TXw/Qax1yD3rsP36q2hBfWtAf11047iSus3VmIXpkDy+6q8edUYtVzXxaEZs6nbdWamT8tCF6r6Czir1WK5oN0mZBPWuAlJzMaZ1I2+uGnBhdHmr6apIcsQcRbv/0Cc3PgmxthBU2RTU6ps9PH4sFMEnT7UJL1uc7VdI7UxO3Pzxu35u8qb9lVd7m45Aq/Vuusbd4KASTTWrD9UeWmcl7iMC9tzukzqzYV3D+bHenezhhr2M0hyRx5BdqAC8ORDmfjSydipbaWwk8FOAo/+VuhtO7HnkHwoE186KXBgP7XBVDKaSfCopmhdTsPBEDljvrLubzf7viq687HSFelyMJX4Dm/7VWL2nAjGe93UbftHnY/J8FAR+ayKZtNb/jhbmqYy5eD+sOx93bc+mneT0yYtVjAdf39gp+y6/hkm5e9qkzdmNKZ0xzhP1rXifb++c9sN9W1Tr95UV+/AaXzjXiiNk5y1aVOsrXOiBHaMpdm5ny5aBRuO3u9nwxWsSO3GAsg6iwvQ9N2ibtxBDfIPlDZKS7OCYxnqnB+CsfkO/aui1MSd+bICJl65bYyJSCdYYEUzncRRBnEcEhFRIxiPoiS87Gzn0pytqzwY0u8rlS7zpu4rfctAIJC0kOw6OBwDxGo8HKMNbHzg+DcQrREHScgesNSoTn6CTLzdrP0090aD9g/EBlLleqH8ad9HgLoxzcFiuOG+q/XhEmXFxuhDvwBf8tQewI/e4RfFItSEqZimmJmUA7WMpDKNDNYsyy6TUvWPhkekp8ckezg98BpduBFchh+kDfrPP/6JdjFxeozZbcYCHFSyWEL4qtDQLNT2ocwoEmIT8VBfQoz21eMhh5F3UUYfC1mfPGR+G3JIw0jhRCRRqJgkMk05NSzOQnjqCLkRl7kpk8czjkPHmNIj0sD7GauTZyxuM8YqNZRljHJCQ8WzNJNSKskjEUchSfRl3vz7X5/AkbH0kMWjHTk9ecjyNmSt0jiNkjjWGJ68ImyY1hInSgkqiJDmEk7Gn8CPxYD40Qk5OTHECTyDGlVtDVAOMHTuze3z1CfaxPFH7Pk+y1rTWewhc9QF5veZOx7NkbP7f7E5PSGbGR6M5uHnNTo5IaPHheby89qsT8hmBl79m3i3OSGjeRwNRrNHG71ZN6a13wKMc35nNh08VkLDPPjdz33dvVhOdAHiVkiVqO2bDLbkFtUZ6hawgRy0LgBek/aJQc99Z6fwEG0HGoJDdb8hxock+uE1VmuaItu98nEvLfDw/tI+e9+339l1ksQ/gEQPo04PqH+N3v6+erF8Ov+lukwXdd0atPz7ZarrDtEff6kmS/T1wwnT0yNctOfqnfnhPvDD6+KjuQvp48O/yPk4ePYe8NXTOTmGMPs/Iow/SphgMmQg+jDE/H2IJ+TpnFbHUOZfFOU4HjZ0/jDI4i7kZxgQ/3gUY/FFMWZMDJ5MHgZZ3oJc+ZwMrCfkBdC2nk2eHgNcflnAOTnOq8M7Xs06QN3Z7DFeH8U7/KJ4CzqekO/shtP9d+TuW6vhfzBe/hdQSwcI/1R0wJYHAAAgIgAAUEsBAhQAFAAICAgAObXEQIjsw7AZxQAAINUAACwAAAAAAAAAAAAAAAAAAAAAADM1OGRiMDUwYTJmZGI5OGYwMDU3MTU4MmU1MzQ4OGI3XHRhYmVsbGUucG5nUEsBAhQAFAAICAgAObXEQOAKlFQ5FwAANhgAACkAAAAAAAAAAAAAAAAAc8UAADM4OTU3ZDEzYTkyYzAzZWM0NDg4ZjFjNmM4ZTBkM2ZmXGJsYXUucG5nUEsBAhQAFAAICAgAObXEQKxbFZfUAAAA5gAAACoAAAAAAAAAAAAAAAAAA90AADViMDU2Mzk2ZGVjYTdlMmY3ZDNjNjhlYTE3MGU4NDdkXGJyYXVuLnBuZ1BLAQIUABQACAgIADm1xEDb9KpymAkAAKEJAAApAAAAAAAAAAAAAAAAAC/eAAA3Mjc4YTBiNWI4N2EzNjE2Y2M0MmUzOWY3NjAwNzRlNVxnZWxiLnBuZ1BLAQIUABQACAgIADm1xEDEqbuixggAAMEIAAAqAAAAAAAAAAAAAAAAAB7oAAAwYWNlMjNmMzI0MTI3YTRmY2Y2NjZhNjQ4NTk4NzFiZFxncsO8bi5wbmdQSwECFAAUAAgICAA5tcRAOpUkr5EJAACVCQAAKAAAAAAAAAAAAAAAAAA88QAAZGFjOWM4Yjk5ZDAxNTA4MGUzZGQ2MGJhYTUyNTE1NmVccm90LnBuZ1BLAQIUABQACAgIADm1xEDWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAACP7AABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAObXEQP9UdMCWBwAAICIAAAwAAAAAAAAAAAAAAAAAgPsAAGdlb2dlYnJhLnhtbFBLBQYAAAAACAAIAIwCAABQAwEAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /></div>
  
  

Version vom 4. Juni 2012, 21:42 Uhr

Inhaltsverzeichnis

Looking for the next dimension

Fig. 1: Illustration of a Calabi-Yau-manifold (Important for the description of higher dimensional models in superstring-theory)

Does our world really have more than three dimensions? If so, do objects in higher dimension have a relation to the world around us? Is it possible to get a perception of these objects or do they withdraw any representation? Questions like these will be posed by students if you talk about space dimensions in school. Students want to understand the meaning of a four-, five or even n-dimensional space. The relativity theory uses four dimensions to explain the concept of space-time, six dimensions are necessary to describe the bending of space-time and different string theories even use representations in up to 26 dimensions (e.g. L. Botelho, R. Botelho, 1999). Another current domain of application for higher dimensional objects and their three-dimensional representations is the study of non-periodic structures in modern crystallography. Within the concept of quasicrystals projections of higher dimensional point-sets (such as the integer-lattice in dimension 5) to three dimensional space are supposed to be good models for non-periodic crystalline structures (see section 5 below).

These examples show one of the main characteristics of mathematical thinking: If it is easier or helpful to describe real phenomena in higher dimensional space, the three special dimensions can be extended. This can easily be explained under formal aspects. Thus, linear equations with three variables may be interpreted as a plane in space, linear equations with four variables are interpreted as a three dimensional hyper plane in a four dimensional space. Also, linear equations with n-variables are interpreted as an (n-1)-dimensional hyper plane in an n-dimensional space. While using more than three variables, the advantage of such an expansion of the dimension-concept benefits from a simpler and more consistent description of mathematical relations. It is not necessary for formal calculations on an algebraic and numerical level to have illustrative perceptions in such a higher dimensional context. Nevertheless, on the one hand this leads to the question how to translate the results of such considerations into the real world. On the other hand there is a need to describe at least basic objects of higher dimensions in our three dimensional space.

In the following, thoughts dealing with the development of representations of higher dimensional objects will be discussed by exemplarily considering a four-dimensional object, the four-dimensional cube. It will be shown that the approach to four- and higher-dimensional cubes can be done in different ways. The extensive use of analogical considerations serves as a basis for understanding higher dimensional objects. In the following, three different approaches will be shown and analyzed (A detailed description of these approaches is found in Ruppert (2010)).

(1) Projections of higher-dimensional objects on (hyper)planes,
(2) Intersections of (hyper)cubes and a (hyper)plane,
(3) A systematic extension of the concept of coordinates.



Projections

In the following, the basic idea of describing higher dimensional objects by means of projection will be generalized in higher dimensions. Especially the orthogonal projection along a body diagonal of an n-dimensional hyper cube (i.e. the line segment from (0, . . . , 0) to (1, . . ., 1)) in an (n-1)-dimensional space can easily be generalized.


Example 1: Projections of square and cube


Fig. 2.1: Projection of a square (Author: Sebastian Hammer, University of Würzburg)



Fig. 2.2:Projection of a cube (Author: Sebastian Hammer, University of Würzburg)



Fig. 3.1: Projection of a 4D-hyper cube; Eight of the projected edges point to the vertices of a 3D-cube
Fig. 3.2: Projection of a 4D-hyper cube; virtuel model

For 1\le i \le 4 let Ai (Sec. 2) be the vertices of the square. The projection of Fig. 2.1 is represented by the intersection of the straight lines

g_{i}: \ \vec{X}= \vec{A_{i}} + k \cdot \begin{pmatrix}1 \\ 1 \end{pmatrix} , \ \ (1\le i \le 4) with the line h:\ x_{1}+x_{2}=0.

This is an orthogonal projection. Similarly, the orthogonal projection of an n-dimensional hyper cube is fully described by the projection of the coordinates of the vertices A_{i}(1\le i \le 2^{n}). We look for the intersection points of the straight lines:

g_{i}: \ \vec{X}= \vec{A_{i}} + k \cdot \begin{pmatrix}1 \\ \vdots  \\1 \end{pmatrix} , \ \ (1\le i \le 2^{n}) and the (n-1)-hyper-plane R:\ x_{1}+ \cdots +x_{2}=0.

The vector (1,1,...,1) is orthogonal to the hyperplane R, the lines gi are the orthogonal lines to the hyperplane R through the vertices Ai. After considering similarities of the projections above, such as vertices having the same image under these special mappings, we get Fig. 3.2 as representation for the corresponding orthogonal projection of a four-dimensional hyper cube into the three-dimensional space.


Another possibility to describe orthogonal projections from n-dimensional into k-dimensional space (k \le n) uses the linearity of orthogonal projections (as linear transformations). This property can be used to create and understand two-dimensional images of cubes of any dimension.


Example 2: Projection of a hypercube

Fig. 4.1: A projection of the five-dimensional unit cube on a plane
Fig. 4.2: A projection of the six-dimensional unit cube on a plane


Fig. 2 shows three generating vectors of the cube and their images under orthogonal projection along the body-diagonal. All vertices of the cube are linear combinations of these vectors with coefficients 0 and 1. The linearity of the projection leads to the same property for the images of all vertices.

While describing the n-dimensional cube with adequate linear combinations of n linear independent generating vectors, the following can be shown: For the n-dimensional cube, there is an orthogonal projection into R2 and an appropriate plane of projection, such that the images of the generating vectors point to the vertices of a regular n-sided polygon. According to additivity, the images of all the other vertices finally result in corresponding linear combinations. (For n=3 see Fig. 2.2 and Example 1, with the regular triangle as image of the generating vectors)

To understand how the projection of an n-dimensional hypercube on a k-dimensional subspace is obtained we first explain how a cube is projected onto a line in the three-dimensional space:
For each vertex of the cube take the plane orthogonal to the given line which contains this vertex. The intersection point of the plane and the line is the orthogonal projection of the vertex onto the line.

Analogously we project the n-dimensional hypercube on a k-dimensional plane. For each vertex of the hypercube take the (n-k)-dimensional plane orthogonal to the given k-dimensional plane which contains this vertex. The intersection point of these two hyperplanes is the orthogonal projection of the vertex onto the k-dimensional subspace.

So, a two-dimensional projection of the five-dimensional unit cube can be indicated: Based on the images of the generating vectors (pointing to the vertices of a regular pentagon), the images of any vertices can be found by appropriately adding those vectors (see Fig. 4.1).


Looking at the projection of the five-dimensional cube, the images of the edges of the cubes span the well-known Penrose-Rhombs (see Senechal 1995). Another remarkable phenomenon is shown in figure 4.2. Under the projection of the six-dimensional Hypercube along its body-diagonal – the line segment with the endpoints (0, 0, 0, 0, 0, 0) to (1, 1, 1, 1, 1, 1) – there are several vertices with the same projection. The number of preimages is also given in Fig. 4.2.


Intersections of cubes

A dynamic representation of a four-dimensional hypercube is given by considering the different shapes of intersection while intersecting it with a three-dimensional hyper plane. Initially, a cube (in a three-dimensional space), which interacts a plane will be regarded. It is assumed, that the objects move with (relative) velocity v. It is especially easy to describe the situation while considering the cube (edge length a) with its edges fixed on the axes of a coordinate system. The plane E(t):\ x_{1}+x_{2}+x_{3}-\sqrt{3} \cdot v \cdot t = 0 moves along a cube diagonal with velocity v through this cube. Since the cube is a convex body itself, it is sufficient to determine the points of intersection of the edges at any time. We get the cross section as the convex hull of these intersection points. In the following, shapes of intersection will be shown in chronological order:

The intersection of a three-dimensional space while moving through a four-dimensional hypercube will be analogously represented as follows:

A four-dimensional hypercube with an edge length a will be intersected with a space R(t), which moves with a velocity of v along the body diagonal of the hypercube. Therefore we define analogously: R(t):\ x_{1}+x_{2}+x_{3}+x_{4}-2 \cdot v \cdot t = 0.

Again, it is sufficient to know the intersection points of the hypercube with R. As a convex hull of these intersection points, we get the following shapes of intersection, which are shown in chronological order:


An interactive simulation of these intersections in one to four dimensions is given in the following applet (Author: Rafael Losada, Instituto GeoGebra de Cantabria).


Geometry of coordinates

The unit line segment and the unit square can be considered as a one‐ or two‐dimensional analog of the unit cube. Looking at the coordinates of the vertices in a coordinate system, we get


Vertices of the unit line-segment: A_{1}= (0) A_{2}= (1)
Vertices of the unit square: A_{1}= (0 \mid 0) A_{2}= (1 \mid 0) A_{3}= (0 \mid 1) A_{4}= (1 \mid 1)
Vertices of the unit cube: A_{1}= (0 \mid 0 \mid 0) A_{2}= (1 \mid 0 \mid 0) A_{3}= (0 \mid 1 \mid 0) A_{4}= (1 \mid 1 \mid 0)
A_{5}= (0 \mid 0 \mid 1) A_{6}= (1 \mid 0 \mid 1) A_{7}= (0 \mid 1 \mid 1) A_{8}= (1 \mid 1 \mid 1)


By successively adding additional coordinates with coefficients 0 and 1, the coordinates of the vertices and thus the number of vertices of a unit hyper cube in a four‐ or five‐dimensional coordinate system are obtained. The transition to hyper cubes in higher dimensions can exclusively be accomplished on a symbolical level and can be considered as a continuation of the concept of the coordinates. Combinatorial considerations lead to the following relation for the number N(n;k) of the k‐dimensional “boundary cubes” of an n‐dimensional cube (see e. g. Graumann, 2009):

N(n;k)={n \choose k} \cdot 2^{n-k}


This formula can be obtained by the following observations:

  1. Every k‐dimensional “boundary‐cube” is parallel to a k‐dimensional hyperplane which is spanned by k generating vectors of the n‐dimensional cube (see also sec. 3). As a consequence, the coordinates of vertices belonging to one and the same k‐dimensional “boundary‐cube” differ in at most k coefficients (and all such vertices belong to this cube).
  2. There are {n \choose k} possibilities to choose k coefficients out of n.
  3. There are 2n possibilities to choose a "starting vertex".
  4. There are 2k starting vertices leading to the same boundary cube.


Example 3: The three‐dimensional cube (n = 3):

Table 1: Number of the k‐dimensional boundaries of an n‐dimensional cube
Number of vertices (k= 0): N(3;0)={3 \choose 0} \cdot 2^{3-0} = 8
Number of edges (k= 1): N(3;1)={3 \choose 1} \cdot 2^{3-1} = 12
Number of faces (k= 2): N(3;2)={3 \choose 2} \cdot 2^{3-2} = 6
Number of cubes (k= 3): N(3;3)={3 \choose 3} \cdot 2^{3-3} = 1


This can be illustrated in table 1.


First of all, following the yellow highlights, the table allows the interpretation of a single point as a cube of dimension 0, so that the formula above is consistent even for n = 0. The number sequences highlighted in different colors lead to further conjectures, which can be proved by using the formula for N(n;k) above. For instance:


  • N(n;n-1)=2n (red color)


  • n \cdot N(n-1;0)=N(n;1) (green color)


  • For\ all\ t\ge 1:\ N(3t-1;t-1) = N(3t-1;t) (blue color)


Moreover, a recursive formula is given, to calculate the data of the n‐dimensional cube of the corresponding numbers for the (n-1)‐dimensional cube


  • N(n;k)= 2 \cdot N(n-1;k) + N(n-1;k-1).



Example 4: Proof of the recursive formula

N(n;k)= 2 \cdot N(n-1;k) + N(n-1;k-1) = 2 \cdot {n-1 \choose k} \cdot 2^{n-1-k} + {n-1 \choose k-1} \cdot 2^{n-1-(k-1)}
= \left[{n-1 \choose k}+{n-1 \choose k-1}   \right] \cdot 2^{(n-k)}
= N(n;k)={n \choose k} \cdot 2^{n-k}
= N(n;k)


Of course, these algebraic arguments can easily be reinterpreted geometrically and retransformed to the geometric situation.


Quasicrystals – Projections from higher dimensions

Starting with the assumption of the classical crystallography, that the characteristic of real crystallographic structures is their translational symmetry (i.e. invariance under three independent translations), mathematical representations of these structures lead to the well-known “crystallographic restriction”, which allows non-trivial rotational symmetries only of orders 2, 3, 4 and 6. This corresponds to physical observations, until Shechtman et al. (1984) found a non-periodic structure of crystals (without translational symmetry) inside an Al-Mn-alloy, which has fivefold rotational symmetry. Christallographers call these structures quasicrystals. To be more precise:

Quasicrystals are structural forms that are ordered but not periodic. They form patterns that fill all the space though they lack translational symmetries.

But these quasicrystals can be very complicated: the lack of translational symmetries leads to a lack of rules to explain how the pattern develops far from a region we are observing. This represents a challenge for the mathematician to explain the pattern. A breakthrough has occurred by the observation that many quasicrystals that look aperiodic are simply projections on a lower dimensional affine subspace of a regular grid in a higher dimensional space. Indeed, let us look at a simple example...

Fig. 5: One-dimensional quasicrystal

Example 5: One-dimensional quasicrystals

For the line g_{1}:\ y=(\tau -1) \cdot x in R2 and its orthogonal g_{2}:\ y= {\frac{1}{1 - \tau}} \cdot x line through the origin with \tau= \frac {1}{2} + \frac {1}{2} \sqrt{5} we consider the orthogonal projection of the unit square on g2 (red line segment). Further we look at all points of Z5 with images under this projection lying on the red line segment. These points are now projected orthogonally on g1 (green points).

The length of the line segments on the projection line can take only two values (corresponding to the projection of the edges of the unit square). Thus we can speak of an “ordered structure”. Moving along the lines, the sequence of these values looks more or less chaotic - there is no translational symmetry, but if we enlarge the universe to two dimensions, then everything becomes clear: our quasicrystal is just the projection of a regular square grid. Enlarging the dimension has allowed us to understand the hidden structure of the quasicrystal.
This process is quite general. Senechal (1995) for instance illustrates regularities and assumptions for projection methods and multigrid methods which lead to quasi-crystalline point-sets. Projecting, for example, parts of a five-dimensional cubic grid (Z5) to a certain plane, a point-set, like in the above sense, is obtained and can be regarded as a two-dimensional quasicrystal. The point-set itself shows all vertices of the Penrose-tiling of the plane (by the two characteristic rhombs, compare section 3 and image 2).


Conclusion

We have discovered one way how the mathematician works, which is sometimes summarized by the following sentence


"Mathematics makes the invisible visible"


When you don’t understand something, you try to change your point of view. It may happen that the new point of view gives an explanation of the hidden structure. This is already what you do when you try to understand a conic: you choose an appropriate system of coordinates in which the equation is simple and reveals the features of the conic.

The benefits students will get out of the working with objects in higher dimensions are manifold. They will especially

  • get a first insight into the meaning of higher dimensions in science;
  • get to know different possibilities of an access to objects in higher dimensions;
  • use analogies to extend their knowledge of the well‐known three dimensional world and they will use the properties of the objects in this world as an abstract concept of a mental fictive world;
  • refresh and repeat their knowledge about projections of three dimensional objects in a plane.


References

BOTELHO, L.; BOTELHO, R.: Quantum Geometry of bosonic strings – Revisited. Notas de Física, Centro Brasileira de Pesquisas Físicas (1999).
CAYLEY, A.: On Jacobi's elliptic functions, in reply to the Rev..; and on quaternions. Philosophical Magazine. (1845) Nr. 26, S. 208–211.
DELONE B.N., Geometry of positive quadratic forms, Usp. Mat. Nauk 3 (1937), S. 16‐62, und Usp. Mat. Nauk 4 (1938), S. 102‐164. (Russisch)
GRAUMANN, G.: Spate in drei und mehr Dimensionen. MU 55/1 (2009), S. 16‐25
HAMILTON, W. R.: On quaternions, or an new system of imagineries in algebra. Philosophical Magazine.(1844) Bd. 25(3), S. 489‐495.
LAGARIAS, J.: Meyer’s concept of quasicrystal and quasiregular sets. Community of Mathematical Physics 179 (1996), S. 365‐376.
MEYER, Y.: Algebraic numbers and harmonic analysis. North Holland (1972)
RIEMANN, B.: Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe (Habil.). Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Bd. 13 (1868)
RUPPERT, M.: Würfelbetrachtungen. Drei Wege zu höheren Dimensionen. MU 56/1 (2010), S. 34‐53.
SCHLÄFLI, L.: Theorie der vielfachen Kontinuität (1852). Denkschrift der Schweizerischen Naturforschenden Gesellschaft, Bd. 38, 1., Hrsg. Graf, J. H. (1901), S. 1‐237.
SENECHAL, M.: Quasicrystals and geometry. Cambridge University Press (1995)

The development of the concept of higher dimensional geometry was started with Hamilton’s (1844), Cayley’s (1845), Schläfli’s and Riemann’s scientific works.