Seite 5

Aus DMUW-Wiki
Version vom 13. Januar 2010, 17:18 Uhr von Martina Müller (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Teilaufgabe d)

In dieser Teilaufgabe beschäftigen wir uns nur noch mit der Urfigur! Wir wollen herausfinden, in welchem Verhältnis der Punkt T die Dreiecksseite AB teilt!

Berechnen wir dazu zuerst den Wert für k. Hinweis: \overrightarrow { AB } ist der Bildpfeil.
Wenn du die Strecken wie in der letzten Teilaufgabe wieder durch Pfeile darstellst (du kannst sie dir im Applet anzeigen lassen), dann gilt:

\overrightarrow { AB } = k \cdot \overrightarrow { AT }

Durch Einsetzen der Werte erhält man dann:

\Rightarrow KlammerMM.gif
8 (x-Koordinate des Pfeils)
2 (y-Koordinate des Pfeils)
Klammer2MM.gif = k \cdot KlammerMM.gif
4 (x-Koordinate des Pfeils)
1 (y-Koordinate des Pfeils)
Klammer2MM.gif

\Rightarrow k = 2 (Zahl eintragen)

1. Was gilt also für die Längen der Strecken [AT] und [TB]?

AT = 2 \cdotTB
Die Strecke [AT] ist genauso lang wie die Strecke [AT]
Die Strecke [AT] ist halb so lang wie die Strecke [AT]
AT = TB

Punkte: 0 / 0


Ordne jetzt die passenden Begriffe den Lücken zu!

Der Punkt T teilt die Strecke [AB] also im Verhältnis 1:1. T ist der Mittelpunkt der Dreiecksseite AB. Die Punkte U und V teilen die anderen beiden Dreiecksseiten im selben Verhältnis. Die Punkte T, U und V werden deshalb auch Seitenmittelpunkte des Dreiecks ABC genannt.
Verbindet man die Seitenmittelpunkte mit den gegenüberliegenden Eckpunkten (klicke das entsprechende Kästchen im Applet an), dann erhält man Strecken, die man Seitenhalbierenden des Dreiecks nennt. Diese schneiden sich alle in einem Punkt. Im Applet ist dieser Punkt die Nase des Gesichts. Er wird Schwerpunkt des Dreiecks genannt und teilt jede Seitenhalbierende im Verhältnis 2:1.

Auf geht's zur letzten Teilaufgabe!