Von Scheitelpunktsform zur Normalform
Von der Scheitelspunktform zur Normalform
Du hast jetzt zwei verschiedene Formen kennengelern, um eine quadratische Funktion darzustellen, einmal die Normalform mit f(x)= ax2 + bx + c und die Scheitelpunktsform mit f(x) = a(x - xs)2 + ys.
Löse die binomische Formel auf. Dann erhältst du: f(x)= -2(x2 + 2x + 1) +3.
Jetzt noch die Klammern auflösen und du hast die Normalform, nämlich: f(x)= -2x2 -4x +1.
|
|
Probiere das in der nächste Aufgabe selber mal aus
- Aufgabe 20
In dieser Aufgabe sind verschiedene Funktionen in der Scheitelspunktform gegeben. Wandle sie auf dem Laufzettel in die Normalform um und ordne sie dann richtig zu.
Zuordnung
Ordne die Funktionen den richtigen Graphen und andersrum zu.
f(x) = 2(x - 3)2 + 4 | f(x)= 2x2 - 12x + 22 |
f(x) = -0,5(x + 4)2 - 2 | f(x)= -0,5x2 + 4x + 6 |
f(x) = 7(x + 4)2 - 9 | f(x)= 7x2 + 14x - 8 |
f(x) = -5(x - 3)2 + 2 | f(x)= -5x2 + 30x + 47 |