Achsensymmetrie
Aus DMUW-Wiki
< Lernpfade | Das Haus der Vierecke und ihre Eigenschaften
Version vom 12. September 2011, 10:25 Uhr von Manuel Doll (Diskussion | Beiträge)
Navigationsmenü
- Einführung
- Einrichtung des Hauses
- Wiederholung Achsensymmetrie Punktsymmetrie
Eine ebene Figur wird als achsensymmetrisch bezeichnet, wenn es eine Gerade a gibt, bei der die Figur durch Spiegelung an dieser auf sich selbst abgebildet wird. Die Gerade heißt Symmetrieachse a.
Erinnere dich an die Eigenschaften achsensymmetrischer Figuren:
Sie sind:
* Geradentreu: Jede Gerade wird nach Spiegelung an der Achse wieder auf eine Gerade abgebildet. * Längentreu: Symmetrische Strecken besitzen die gleiche Länge * Winkeltreu: Symmetrische Winkel sind gleich groß. Der gespiegelte ist allerdings umgekehrt orientiert * Kreistreu: Durch Spiegelung eines Kreises entsteht wieder ein Kreis mit gleichem Radius * Parallelentreu
Spiegelt man eine Parallele zur Spiegelachse, so ist auch die gespiegelte Gerade parallel dazu.
Ein Beispiel ist der achsyensymmetrische Buchstabe M
Nun geht es weiter zur Punktsymmetrie