Zusammengesetzte Zufallsexperimente und Pfadregeln
Aus DMUW-Wiki
< Lernpfade | Digitaler Test zur Stochastik der Sekundarstufe 1
Version vom 27. September 2009, 14:27 Uhr von Annalena Dürr (Diskussion | Beiträge)
Aufgabe 1:
- Es wird zunächst ein klassischen Würfel und im Anschluss eine Münze geworfen.
- a) Wie sieht das dazugehörige Baumdiagramm aus?
- Zeichne es in dein Heft und vergleiche anschließend mit der Lösung hier
- b) Kreuze alle Elemente an, die zum Ergebnisraum gehören:
({1;W}) ({1;Z}) ({2;W}) ({2;Z}) ({3;W}) ({3;Z}) ({4;W}) ({4;Z}) ({5;W}) ({5;Z}) ({6;W}) ({6;Z}) (!{1;1}) (!{2;3}) (!{4;2}) (!{5;1}) (!{W;Z}) (!{Z;W}) (!{0;W}) (!{W;1}) (!{Z;5}) (!{W;2}) (!{2;6}) (!{6;6})
- c) Vervollständige dein Baumdiagramm aus Teilaufgabe a), indem du die einzelnen Wahrscheinlichkeiten an jeden Pfad schreibst.
- Kontrollieren kannst du das Ergebnis mithilfe des folgenden Links:
- d) Berechne mithilfe der Pfadregeln die Wahrscheinlichkeiten der Ereignisse:
- i) E1: Es wird eine 1 gewürfelt:
- Markiere im Baumdiagramm die zugehörigen Pfade gelb.
- Kreuze die richtige Antwort an:
P(E1) ist (!) () (!25%) (!)
Hier kannst du deinen Rechenweg und die Markierung der Pfade kontrollieren:
- ii) E2: Es wird Zahl geworfen
- Markiere im Baumdiagramm die zugehörigen Pfade grün
- Kreuze die richtige Antwort an:
P(E2) ist (!) (!) (!) (50%)
Hier kannst du deinen Rechenweg und die Markierung der Pfade kontrollieren:
- iii) E3: Es wird eine ungerade Augenzahl gewürfelt
- Markiere im Baumdiagramm die zugehörigen Pfade blau
- Kreuze die richtige Antwort an:
P(E3) ist () (!35%) (!) (!)
Hier kannst du deinen Rechenweg und die Markierung der Pfade kontrollieren:
- iv) E4: Es wird mindestens eine 5 gewürfelt
- Markiere im Baumdiagramm die zugehörigen Pfade rot
- Kreuze die richtige Anwort an:
P(E4) ist (!30%) () (!) (!)
Hier kannst du deinen Rechenweg und die Markierung der Pfade kontrollieren: