Seite 2
Teilaufgabe b)
Wenn du am Schieberegler ziehst, kannst du das Flugzeug ein Looping fliegen lassen.
Um wieviel Grad wurde das Flugzeug gedreht, wenn es a) 360(°), |
Schauen wir uns die Drehung um 90° noch einmal ein bisschen genauer an!
Welche Koordinaten hat der Bildpunkt zu A(12|14) nach einer um den Punkt Z(1|1) mit dem Drehwinkel α = 90°? Berechne die Verbindungvektoren (Urvektor) und (Bildvektor)!
{{{1}}} (11 (x-Koordinate) | 13 (y-Koordinate)) |
Das war doch gar nicht so schwer, oder? Üben wir das noch einmal an zwei Beispielen!
1. Gib zuerst die Koordinaten des Verbindungsvektor ZC an, wenn der Punkt C(2|14) um den Punkt Z(1|1) um 90° gedreht wird!
ZC (1 (x-Koordinate) | 13 (y-Koordinate))
Nach dem was du gerade gelernt hast ist es jetzt ganz einfach, die Koordinaten des Vektors ZC' zu berechnen!
ZC' (-12 (x-Koordinate) | 1 (y-Koordinate))
2. Das Flugzeug wird jetzt um das Zentrum Z(4|-2) um 90° gedreht. Berechne den Verbindungsvektor ZC' (C(2|14)).
ZC (1 (x-Koordinate) | 6 (y-Koordinate))
ZC' (-6 (x-Koordinate) | 1 (y-Koordinate))
Welche Koordinaten hat der Punkt C'?
C' (-3 (x-Koordinate) | 9 (y-Koordinate))
→Du hast das toll gemacht! Auf geht's zur nächsten Teilaufgabe!