Seite 3

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche

2.Station: Multiplikation zweier Brüche


Einführung:

Sandra Hemrich Bruch Station2.png





Hast du nun anhand der Zeichnung die Regel der Multiplikation eines Bruches mit einer ganzen Zahl erkannt??????

Kreuze an!!! Welche Rechenregel stimmt? (! \frac{2*5}{3*4} ) ( \frac{2*4}{3*5} ) ( \frac{4*2}{5*3} )

 


Tom, Susi und Martin spielen alle ein Instrument und können Noten lesen!!! Kannst du das auch???


                                                                    Sandra Hemrich Bild Noten neu.jpg


Erkennst du, welchen Wert die Noten haben???
Versuche die Aufgaben zu lösen und klicke danach auf "Prüfen". Die richtige Lösung wird mit grün angezeigt. Falsche Lösungen sind rot!!!


  Sandra Hemrich Bild Noten1.jpg=( \frac{1}{32} )(! \frac{2}{32} )

                            


  Sandra Hemrich Bild Noten2.jpg= (1 \frac{1}{16} ) (! \frac{1}{16} )

                               


  Sandra Hemrich Bild Noten3.jpg= ( \frac{1}{8} ) (! \frac{1}{6} )

 





Sandra Hemrich Bild Merke.png

Multiplikation zweier Brüche

  • Zwei Brüche werden miteinander multipliziert, indem man den Zähler mit Zähler und den Nenner mit dem Nenner multipliziert
  • Das Ergebnis kürzt man soweit wie möglich oder wandelt es in eine gemischte Zahl um.


  • allgemein:    \frac{a}{b} *  \frac{c}{d} =  \frac{a*c}{b*d}


  • Beispiel oben:     \frac{2}{3} *  \frac{4}{5} =  \frac{2*4}{3*5}


  • Die Regel gilt auch für Stammbrüche: siehe Notenbeispiel  \frac{1}{4} *  \frac{1}{2} =  \frac{1+1}{4*2}


  • Es gilt auch das Kommutativgesetz!!!   \frac{a}{b} *  \frac{c}{d} =  \frac{c}{d} *  \frac{a}{b}




Hier geht`s zur 4. Seite