Seite 3

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche

2.Station: Multiplikation zweier Brüche

Einführung:

Susi hat am nächsten Tag eine Tafel Schokolade in der Schule dabei!!! Tom sieht Susi die Schokolade im Klassenzimmer essen und hat sofort auch Heißhunger darauf. Er fragt sie, ob er ein Stück davon haben kann. Susi antwortet: "Ich habe aber nur noch  \frac{4}{5} von der Schokolade!!!" Doch weil sie Tom so gern hat gibt sie ihm dann doch noch  \frac{2}{3} davon ab!!!

Kannst du errechnen welchen Bruchteil der Schokolade Tom bekommt?????? ( \frac{8}{15} ) (! \frac{10}{12} ) (! \frac{4}{10} )

 






 \frac{2}{8} *  \frac{2}{4} = ( \frac{2}{32} ) ( \frac{4}{32} ) (! \frac{1}{8} )

 \frac{3}{7} *  \frac{4}{3} = ( \frac{12}{21} ) ( \frac{4}{7} ) (! \frac{28}{9} )

 \frac{2}{4} *  \frac{4}{3} = (! \frac{4}{6} ) (! \frac{8}{4} ) (! \frac{6}{16} )

 




Kreuze an!!! Welche Rechenregel stimmt für  \frac{a}{b} *  \frac{c}{d} ? ( \frac{a*c}{b*d} ) (! \frac{a*d}{b*c} ) (! \frac{a*b}{c*d} )

 



Multiplikation zweier Brüche

                                                                                                       Beispiel:     \frac{2}{5} *  \frac{3}{4}

    1)   Multpliziere die Zähler miteinander.                                                                                                

    2)   Ebenfalls werden die Nenner beider Brüche miteinander multipliziert beiden          \frac{2}{5} * \frac{3}{4} =  \frac{2*3}{5*4}

    3)   Kürze das Ergebnis soweit wie möglich!                                                                                                                          \frac{10}{12} =  \frac{5}{6}

    4)   Wandle den Bruch (wenn möglich) in einen gemischten Bruchum.                                                                                                                                       &nbsp

&nbsp





Sandra Hemrich Bild Merke.jpg

Multiplikation zweier Brüche

  • Zwei Brüche werden miteinander multipliziert, indem man den Zähler mit Zähler und den Nenner mit dem Nenner multipliziert
  • Das Ergebnis kürzt man soweit wie möglich oder wandelt es in eine gemischte Zahl um.


  • allgemein:  \frac{a}{b} *  \frac{c}{d} =  \frac{a*c}{b*d}


  • Beispiel oben:  \frac{2}{3} *  \frac{4}{5} =  \frac{2*4}{3*5}


  • Es gilt auch das Kommutativgesetz!!!
















Hier geht`s zur 4. Seite