Abbildung durch zentrische Streckung
Lernpfad
|
1. Station: Ähnlichkeitsabbildung
- Hier siehst du Panto mit einer Taschenlampe. Schalte die Taschenlampe ein, dann leuchtet
- sie direkt auf einen grünen Strohhalm. An der Wand entsteht dabei ein Schatten.
- Verschiebe Panto näher an den Strohhalm heran, oder weiter von dem Strohhalm weg.
- Lies die folgenden Beobachtungen konzentriert durch und hake die richtigen Aussagen ab:
- Der Strohhalm wird als Urbild und der Schatten als Bild bezeichnet.
- Wie man sieht haben der Strohhalm und der Schatten verschiedene Größen, doch sie sind sich ähnlich.
- Deshalb spricht man von einer Ähnlichkeitsabbildung.
- Die Vergrößerung geht von einem Zentrum, in unserem Beispiel der Taschenlampe, aus. Man spricht hierbei von
- einer zentrischen Streckung. Das Streckungszentrum wird mit Z bezeichnet.
- Urbild, Bild und Streckungszentrum liegen auf den Lichtstrahlen, die von der Taschenlampe ausgehen. Diese
- Lichtstrahlen sind Halbgeraden.
2. Station: Streckungsfaktor
- In dem nächsten Fall ist das Urbild ein Dreieck, dass du zentrisch strecken kannst, indem du an dem Schieberegler ziehst.
- Der Schieberegler durchläuft die positiven Zahlen von k=0 bis k=3.
Was verändert sich? Orientiere dich dabei an diesen Fragen:
Auf welcher Seite von Z liegen das Urbild und das Bild? (auf derselben Seite) (!auf verschiedenen Seiten) Was liegt bei k>1 vor? (eine Vergrößerung) (!eine Verkleinerung) (!die Identität) Was liegt bei 0<k<1 vor? (!eine Vergrößerung) (eine Verkleinerung) (!die Identität) Was liegt bei k=1 vor? (!eine Vergrößerung) (!eine Verkleinerung) (die Identität) Was passiert wenn k=0 ist? (es erfolgt keine zentrische Streckung) (!es erfolgt eine zentrische Streckung) |
- Was sind die Unterschiede, wenn ihr dieses Dreieck zentrisch streckt? Dieses mal durchläuft der
- Schieberegler die negativen Zahlen von k=-3 bis k=0.
Was verändert sich? Orientiere dich dabei an diesen Fragen:
Auf welcher Seite von Z liegen das Urbild und das Bild? (!auf derselben Seite) (auf verschiedenen Seiten) Was liegt bei k< -1 vor? (eine Vergrößerung) (!eine Verkleinerung) (!die Identität) (!eine Spiegelung) Was liegt bei 0>k> -1 vor? (!eine Vergrößerung) (eine Verkleinerung) (!die Identität) (!eine Spiegelung) Was liegt bei k= -1 vor? (!eine Vergrößerung) (!eine Verkleinerung) (!die Identität) (eine Spiegelung) |
- Um herauszufinden was das k bedeutet, musst du dir jetzt bei dieser zentrischen Streckung anschauen, wie
- sich die Streckenlängen verändern, wenn du k veränderst. Dazu musst du dir die Streckenlängen anzeigen lassen.
- Zur Hilfe orientiere dich an dieser Frage:
- Was ist der Unterschied zwischen der Länge der Bildstrecke zur Urbildstrecke?
- Hier kannst du deine Vermutung mit der von Dia vergleichen:
- k bezeichnet man als den Streckungsfaktor. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.
3. Station: Berechnung der Streckenlängen und des Streckungsfaktors
- Wie ihr in der 2. Station schon herausgefunden habt ist die Bildstrecke |k|-mal so lang wie die Urbildstrecke.
- Geometrisch bedeutet dies: ZB' = |k| ∙ ZB
4. Station: Zusammenfassung
5. Station: Übung
- Das Bild zeigt eine zentrische Streckung.
Vorsicht: Die Nummerierung im Bild stimmt nicht mit der Nummerierung der Kreuzworträtselkästchen überein! Lies die Frage genau durch, um zu wissen nach welcher Nummer gefragt ist!!!
Streckungsfaktor | Was zeigt die 1? |
Streckungszentrum | Was zeigt die 2? |
Halbgerade | Was zeigt die 3? |
Urbild | Was zeigt die 4? |
Bild | Was zeigt die 5? |