Von Scheitelpunktsform zur Normalform
Aus DMUW-Wiki
< Variationen | Quadratische Funktionen1
Version vom 20. Februar 2010, 19:20 Uhr von Daniel Özbe (Diskussion | Beiträge)
Von der Scheitelspunktform zur Normalform
Du hast jetzt zwei verschiedene Formen kennengelern, um eine quadratische Funktion darzustellen.
Einmal die Normalform mit f(x)= ax2 + bx + c und die Scheitelpunktsform mit f(x) = a(x - xs)2 + ys.
Doch wie kommst du von der Scheitelpunktsform auf die Normalform?
Ganz einfach! Wie dir bestimmt schon aufgefallen ist, steckt in der Scheitelpunktsform eine binomische Formel.
In der quadratischen Funktion mit der Scheitelpunktsform f(x)= -2(x + 1)2 +3 steckt beispielsweise die binomische Formel (x + 1)2. Löst du diese auf erhältst du f(x)= -2(x2 + 2x + 1) +3.
Jetzt noch die Klammern auflösen und du hast die Normalform, nämlich:
f(x)= -2x2 -4x +1.