Von Scheitelpunktsform zur Normalform
Von der Scheitelspunktform zur Normalform
Du hast jetzt zwei verschiedene Formen kennengelern, um eine quadratische Funktion darzustellen, einmal die Normalform mit f(x)= ax2 + bx + c und die Scheitelpunktsform mit f(x) = a(x - xs)2 + ys.
Löse die binomische Formel auf. Dann erhältst du: f(x)= -2(x2 + 2x + 1) +3.
Jetzt noch die Klammern auflösen und du hast die Normalform, nämlich: f(x)= -2x2 -4x +1.
|
|