2.Station

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche

1. Station: Ähnlichkeitsabbildung - Exkurs: Weitere Beispiele einer zentrischen Streckung - 2. Station: Streckungsfaktor - Fortsetzung der 2. Station: Streckungsfaktor - 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors - 4. Station: Zusammenfassung - 5. Station: Übungen - 6. Station: Wissenswertes


2. Station: Streckungsfaktor

In dem nächsten Fall ist das Urbild ein Dreieck, dass du zentrisch strecken kannst, indem du an dem Schieberegler ziehst.
Der Schieberegler durchläuft die positiven Zahlen von k=0 bis k=3.
Was verändert sich? Orientiere dich dabei an diesen Fragen:

1. Auf welcher Seite von Z liegen das Urbild und das Bild?

auf derselben Seite
auf verschiedenen Seiten

2. Was liegt bei k>1 vor?

eine Vergrößerung
eine Verkleinerung
die Identität

3. Was liegt bei 0<k<1 vor?

eine Vergrößerung
eine Verkleinerung
die Identität

4. Was liegt bei k=1 vor?

eine Vergrößerung
eine Verkleinerung
die Identität

5. Was passiert wenn k=0 ist?

es erfolgt keine zentrische Streckung
es erfolgt eine zentrische Streckung

Punkte: 0 / 0



Was sind die Unterschiede, wenn du dieses Dreieck zentrisch streckst? Dieses mal durchläuft der
Schieberegler die negativen Zahlen von k=-3 bis k=0.


Was verändert sich? Orientiere dich dabei an diesen Fragen:

1. Auf welcher Seite von Z liegen das Urbild und das Bild?

auf derselben Seite
auf verschiedenen Seiten

2. Was liegt bei k< -1 vor?

eine Vergrößerung
eine Verkleinerung
die Identität
eine Spiegelung

3. Was liegt bei 0>k> -1 vor?

eine Vergrößerung
eine Verkleinerung
die Identität
eine Spiegelun)

4. Was liegt bei k= -1 vor?

eine Vergrößerung
eine Verkleinerung
die Identität
eine Spiegelung

Punkte: 0 / 0



Weiter zur Fortsetzung der 2. Station: Streckungsfaktor
Zurück zum Exkurs: Weitere Beispiele einer zentrischen Streckung