Wiederholung
Lernpfad
|
Bevor du dich mit dem Satz des Pythagoras beschäftigen kannst, musst du noch ein paar Grundlagen wiederholen.
Das ist ein Dreieck.
Ich hoffe du kannst dich noch daran erinnern.
Es hat drei Seiten und drei Eckpunkte.
Blöderweise ist in der Zeichnung noch nichts beschriftet.
Aber zum Glück bist du ein alter Dreieck-Profi und kannst das für mich übernehmen.
Beschrifte die Zeichnung. |
Hast du es geschafft? Super, jetzt kenne ich mich wieder etwas besser aus.
Hier kannst du dir die Regeln noch einmal ansehen.
Diese Darstellung ist schon gut. Es fehlt aber noch etwas.
Ein Dreieck hat doch auch noch drei Winkel?
Ein komisches Wort, oder? Aber ihre Bezeichnungen sind noch komischer: α, β und γ.
Diese Buchstaben kommen aus dem griechischen Alphabet.
Ich weiß nicht mehr genau wie sie angeordnet sind.
Aber zum Glück kannst du mir dabei ja helfen.
Ordne die Winkel den richtigen Seiten zu und klicke danach auf Prüfen. |
Wunderbar!
Jetzt haben wir ja schon einiges zum Thema Dreieck wiederholt.
Ich habe dir noch einmal alles übersichtlich zusammengefasst:
Schauen wir doch einmal was du sonst noch so über Dreiecke weißt.
Versuche herauszufinden, welches Dreieck zu welcher Beschreibung passt. |
gleichschenkliges Dreieck | zwei Seiten sind gleich lang | |
spitzwinkliges Dreieck | alle drei Winkel < 90° | |
stumpfwinkliges Dreieck | ein Winkel > 90° | |
gleichseitiges Dreieck | alle drei Seiten sind gleich lang | alle drei Winkel sind gleich groß (60°) |
rechtwinkliges Dreieck | ein Winkel beträgt genau 90° |
Du warst dir ein wenig unsicher? Kein Problem - Ich habe dir die ganzen Regeln noch einmal übersichtlich zusammengefasst.
gleichschenkliges Dreieck: zwei Seiten(zwei Schenkel) sind gleich lang |
Du denkst nun, dass dir keiner mehr was in Sachen Dreieck vormachen kann?
Wollen wir doch mal sehen was du noch kannst.
Verschiebe den Punkt C so, dass ein rechtwinkliges Dreieck entsteht. Welchen x-Wert hat der Punkt C? |