Grundlagen der Zerlegungsgleichheit von Figuren
Aus DMUW-Wiki
< Lernpfade | Flächeninhalt ebener Figuren
Version vom 28. Mai 2009, 18:54 Uhr von Anja Ebert (Diskussion | Beiträge)
Auf dieser Seite lernst Du die Eigenschaften der Zerlegungsgleichheit von Figuren kennen.
Inhaltsverzeichnis |
Grundlagen der Zerlegungsgleichheit von Figuren
Wiederholung des Kongruenzbegriffes
Weißt Du noch was man unter Kongruenz von Figuren versteht??
Eine Wiederholung kann nicht schaden, oder?
Los geht´s: Teste Dein Wissen!
Ein anderes Wort für Kongruenz ist Deckungsgleichheit
Aufgabe: Wie erzeugt man kongruente Figuren?
Aufgabe: Kongruente Dreiecke
Findest Du alle Dreiecke, die zum Dreieck A kongruent sind?
Gib die Buchstaben an und begründe warum.
Lösung:
Kongruente Dreiecke zu A sind: E,F (Drehung); C(Spiegelung);G(Drehung und Spiegelung
Welche Dreiecke sind ähnlich zu A??
Antwort:C,D,E,F,G,J sind ähnlich zu A
Kleines Quiz
Achtung!! Mehrere Antworten sind möglich!
Zerlegungsgleichheit von Figuren
Logbucheintrag
- Übertrage folgende Definition in Dein Heft:
Zwei Figuren sind zerlegungsgleich, wenn sie in paarweise kongruente Teilfiguren zerlegt werden können. Beispiel:
|