Praktische Grenzen der Berechenbarkeit

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche


Inhaltsverzeichnis

Funktionsgraphen

  Aufgabe   Stift.gif

Wie gut kennst du noch die Funktionsgraphen und Funktionsnamen?

Ordne den Funktionsgraphen die zugehörigen Funktionsnamen und Funktionsterme zu!

Was bin ich? Exponentialfunktion f(x)=e^x
Was bin ich? f(x)=x Lineare Funktion
Was bin ich? Potenzfunktion f(x)=x^2

Lineare Suche

Der unten stehende Algorithmus durchsucht ein gegebenes Array a nach einem Objekt x.

Algorithmus Lineare_Suche
Eingabe: ein Array a der Länge n und ein zu suchendes Objekt x
Ausgabe: true, wenn es ein j, 1 <= j <= n gibt mit a[j] = x
  j := 1
  gefunden := (a[j] = x)
  wiederhole
    j := j + 1
    gefunden := (a[j] = x)
  solange j =< n
  return gefunden

Der Algorithmus geht die Elemente des Arrays der Reihe nach durch. Dabei vergleicht er jedes Element mit dem Objekt x. Das Programm endet, sobald x gefunden oder das Ende des Arrays erreicht worden ist.

Notiere den Merksatz auf deinem Laufzettel.

Nuvola apps kig.png   Merke

Zur Analyse der Laufzeit eines Algorithmus zählt man die elementaren Rechenoperationen. Hierzu zählen:

  • Vergleiche wie "<", ">", "=", "and", "not",...
  • Wertzuweisungen wie ":="
  • Rechenoperationen wie "+", "-", "*", "/",...


Die Zahl der benötigten Rechenoperationen hängt offensichtlich von der Größe des Arrays ab und davon, ob bzw. an welcher Stelle im Array das Objekt x vorkommt. Im besten Fall (englisch "best case") benötigt man also sechs elementare Rechenoperationen. Dies ist der Fall wenn das gesuchte Objekt im ersten Arrayfeld ist. Hier wird die "wiederhole-solange"-Schleife (auch while-Schleife) nicht durchlaufen.

Im schlechtesten Fall wird die while-Schleife (n-1)-mal durchlaufen. Dies ist der Fall, wenn das gesuchte Objekt x überhaupt nicht im Array vorhanden ist. Dann benötigt man 3+(n-1)\cdot 7 = 7\cdot n - 4 elementare Rechenoperationen.

Interessant ist auch der durchschnittliche Fall (englisch "average case"). Hier wird die durchschnittliche Laufzeit über alle Möglichkeiten unter Berücksichtung der Wahrscheinlichkeit für die Eingabe a gemittelt. Man benötigt im Durchschnitt 3+4\cdot(n-1)= 4\cdot n - 1 Rechenschritte.

Mit T(n) wird die Anzahl der elementaren Rechenoperationen in Abhängigkeit von der Länge des Arrays bezeichnet. Zusammenfassend erhalten wir:

  • T_{best}\left(n\right)= 6
  • T_{average}\left(n\right)=4\cdot n - 1
  • T_{worst}\left(n\right)= 7\cdot n - 4

Notiere auf deinem Laufzettel, welche Fälle man bei der Laufzeitanalyse untersucht.

O-Notation

Im vorangegangenen Abschnitt haben wir uns mit der Anzahl der Rechenoperationen in Abhängigkeit von der Eingabegröße beschäftigt. Um die unterschiedlichen Algorithmen unterschiedlichen "Schwierigkeitsklassen" zuordnen zu können, wird die sogenannte \mathcal{O}-Notation eingeführt.

Notiere die Definition auf deinem Laufzettel.

Definition


Sind f und g zwei Funktionen. Dann ist f von Ordnung g, wenn es eine Konstante C>0 gibt, so dass  f(n)\leq C\cdot g(n) für alle n\in\mathbb{N} ab einer gewissen Größe.

Mit \mathcal{O}(g) bezeichnet man alle Funktionen der Ordnung g


Die wichtigsten Ordnungsklassen sind:

  • konstante Ordnung \mathcal{O}(1)
  • logarithmische Ordnung \mathcal{O}(\log n)
  • lineare Ordnung \mathcal{O}(n)
  • n-log-n Ordnung \mathcal{O}(n\cdot \log n)
  • quadratische Ordnung \mathcal{O}(n^2)
  • polynomielle Ordnung \mathcal{O}(n^k) mit k\in\mathbb{N} fest
  • exponentielle Ordnung \mathcal{O}(d^n) mit d>1

Je weiter man die Liste nach unten geht, um so schwieriger ist die Funktion zu berechnen.

Bubble Sort

Sortierverfahren spielen in der Praxis eine wichtige Rolle. Bubble-Sort ist eines der einfacheren Sortierverfahren. Der Name kommt daher, dass große Elemente wie Luftblasen nach oben steigen. In diesem Video kann man die Funktionsweise anschaulich sehen.

Algorithmus BubbleSort
Eingabe: ein Array der Länge n
Ausgabe: ein aufsteigend sortiertes Array
 wiederhole
   vertauscht := falsch
   für jedes i von 1 bis n - 1 wiederhole 
     falls A[ i ] > A[ i + 1 ] dann
       vertausche( A[ i ], A[ i + 1 ] )
       vertauscht := wahr
     ende falls
   ende für
   n := n - 1
 solange vertauscht und n >= 1

Die äußerste Schleife durchläuft die zu sortierenden Daten, bis keine Vertauschungen mehr nötig sind. In dieser Schleife wird das Feld jeweils einmal durchlaufen und es werden zwei benachbarte Daten vertauscht, wenn sie in falscher Reihenfolge stehen.

Zur Laufzeit: Im schlechtesten Fall ist das Array absteigend sortiert. Dann steigt das erste Element von Feld 1 zu Feld n auf. Das zweite Element steigt dann von Feld 1 bis Feld n-1 auf und so weiter bis das Array aufsteigend sortiert ist. Es werden dann also für das erste Element n-1 Vertauschungen , für das zweite Element n-2 Vertauschungen, für das dritte Element n-3 Vertauschunge usw. durchgeführt. Beim letzten Element muss dann keine Vertauschung mehr durchgeführt werden. Insgesamt sind das dann \frac{n\cdot (n-1)}{2} Vertauschungen. BubbleSort hat dann eine Laufzeit von \mathcal{O}(n^2).

Im besten Fall ist das Array bereits aufsteigend sortiert. Dann wird das Array genau einmal durchlaufen und dabei feststellen, dass das Array bereits sortiert ist. BubbleSort hat dann eine Laufzeit von \mathcal{O}(n).

Unter diesem Link werden die Sortierverfahren BubbleSort, Quicksort, Heapsort, InsertionSort, Mergesort und SelectionSort visualisiert.

Alle diese Sortierverfahren haben eine worst-case-Laufzeit zwischen \mathcal{O}(n\cdot\log(n)) und \mathcal{O}(n^2).

  Aufgabe   Stift.gif

Beantworte die Multiple-Choice Fragen!

1. Welche Ordnung hat das Programm "methode1"?

//Programm methode1
public static int methode1 (int n) {
  int i,j,k;
  int a = 0;
  int b = 1;
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      for (k = 0; k < n; k++)
        a += b;
\mathcal{O}(n)
\mathcal{O}(n^2)
\mathcal{O}(n^3)

2. Welche Ordnung hat das Programm "methode2"?

// Programm methode2
public static int methode2 (int n) {
  int i,j,x,y;
  x = 0; y = 0;
  for (i = 1; i < n; i++) {
    for (j = i; j < n; j++) {
      x = x + 1;
Antwort a) \mathcal{O}(n)
Antwort b) \mathcal{O}(n^2)
Antwort c) \mathcal{O}(n^3)

Punkte: 0 / 0


Türme von Hanoi

Das Spiel Türme von Hanoi besteht aus drei Stäben A,B und C, auf die verschieden große, gelochte Scheiben gesteckt werden können. Ziel des Spieles ist es, denn Stapel von Stab A auf Stab C zu verschieben. Dabei darf immer nur eine Scheibe auf eine anderen Stab gesteckt werden, wobei auf dem Zielstab keine kleinere Scheibe sein darf. Die Scheiben sind auf jedem Stab also der Größe nach geordnet.

  Aufgabe   Stift.gif

1. Spielt man dieses Spiel mit nur einer Scheibe, so ist die Anzahl der nötigen Züge trivialerweise Eins, da die eine vorhandene Scheibe lediglich vom linken auf den rechten Stab gesteckt werden muss.
Im Falle von zwei Scheiben ist fast ebenso einfach: Man steckt die kleine Scheibe auf den mittleren Stab, bewegt die große Scheibe auf den rechten Stab und setzt die kleine Scheibe obendrauf. Man benötigt also drei Züge.

In dieser Animation siehst du die Lösung für den Fall, dass man mit 3 Scheiben spielt.

Häufglöckner Hanoi3.gif

Wie viele Schritte werden benötigt, um den Turm mit 3 Scheiben von der linken auf die rechte Seite zu bringen?

6
7
8

2. Wie viele Schritte werden benötigt, um den Turm mit 4 Scheiben von der linken auf die rechte Seite zu bringen?

Häufglöckner Hanoi4.gif
15
16
17

3. Angenommen n ist die Anzahl der Scheiben, mit denen gespielt wird. Wie verhält sich die Anzahl der benötigten Züge in Abhängigkeit von n?

linear
quadratisch
exponentiell

Punkte: 0 / 0


Zusatzinformation:

Die Originalversion der Türme von Hanoi wurde von buddhistischen Mönchen ausgedacht. Dabei gab es ebenfalls 3 Stäbe, aber 64 Scheiben. Die Mönche prophezeiten das Ende der Welt, falls diese Aufgabe gelöst werde. Für die Lösung benötigt man mehr als 1,8\cdot 10^{19} Scheibenbewegungen. Würde ein Mensch für eine Scheibenbewegung 1 Sekunde benötigen, würde das Lösen der Aufgabe 584.942.417.355 Jahre dauern, ohne auch nur geschlafen zu haben.

Wachstum von Funktionen

  Aufgabe   Stift.gif

Gegeben sind die untenstehenden Funktionen. Ab welchem ganzzahligen x ist die Exponentialfunktion f(x) größer als die Funktionen g,\,h,\,i?

  • f\left(x\right)=2^x
  • g\left(x\right)=x^2
  • h(x) = x \cdot \log_2 (x)
  • i(x) = 2\cdot x

Stelle zur Bestimmung eine Wertetabelle auf oder löse die Aufgabe graphisch! Überprüfe anschließend dein Ergebnis durch Ausfüllen des Lückentextes.

1. Gib deine Ergebnisse in die entsprechenden Lücken ein.

* Die Funktion f(x)=2^x ist für x\geq größer als g\left(x\right)=x^2.
* Die Funktion f(x)=2^x ist für x\geq größer als h(x) = x \cdot \log_2 (x).
* Die Funktion f(x)=2^x ist für x\geq größer als i(x) = 2\cdot x.

Punkte: 0 / 0



Die Tabelle sieht dann folgendermaßen aus:

Haeufgloeckner WertetabelleFunktionen.png

Die zugehörigen Graphen sind in diesem Bild dargestellt:

Haeufgloeckner Funktionsgraphen.gif


Reiskörner auf einem Schachbrett

Im alten Persien gab es einen klugen Hofdiener, der seinem König ein Schachbrett schenkte. Als Dank dafür durfte sich der Hofdiener etwas wünschen. Er sagte: "Ich wünsche mit nichts weiter, als dass das Schachbrett mit Reis gefüllt wird und zwar so, dass auf dem ersten Feld ein Reiskorn liegt, auf jedes weitere die doppelte Anzahl an Reiskörnern., also 1 Korn auf dem ersten Feld, 2 Körner auf dem zweiten, 4 Körner auf dem dritten, 8 Körner auf dem vierten und so weiter."

Der König war überrascht und sagte: "Es ehrt dich, dass du einen so bescheidenen Wunsch hast. Er soll dir auf der Stelle erfüllt werden."

Der Hofdiener lächelte und verneigte sich tief vor seinem König.

  Aufgabe   Stift.gif

Warum lächelte der Hofdiener, nachdem ihm der Wunsch gewährt worden war?

Der Hofdiener war von nun an der reichste Mann im ganzen Land. Denn summiert man die Anzahl der Reiskörner auf (allein auf dem n-ten Feld sind 2^{n-1} Reiskörner zu finden), erhält man die gigantische Zahl 18.446.744.073.709.552.000 (18,4 Trillionen) Reiskörner. Geht man davon aus, dass ein Reiskorn im Durchschnitt 0,03g wiegt, ergibt sich eine Masse von 553.402.322.000 Tonnen, was in etwa der heutige Weltjahresproduktion an Reis entspricht.

Spielstellungen beim Schach

In den Nachrichten liest man von Zeit zu Zeit einen Artikel über Schach-Matches zwischen Schachgroßmeistern wie "Garri Kasparow" und Supercomputern wie "Deep Blue". Doch warum braucht man dazu Supercomputer? Und warum gewinnt der Computer nicht immer? Die Antwort auf diese Frage kannst du dir vielleicht schon nach dieser Aufgabe selbst beantworten!

Ein Computerschachprogramm baut sich für jede Spielsituation einen Spielbaum auf und analysiert mit diesem, welcher Zug den größten Erfolg bringt. Um die Größe eines solchen Spielbaums geht es in dieser Aufgabe:

  Aufgabe   Stift.gif
  • Wie viele Knoten hat ein Schachspielbaum, bei dem jeder Halbzug (d.h. schwarz oder weiß ist am Zug) 5 Zugmöglichkeiten hat und ein Spiel im Durchschnitt nach 60 Halbzügen beendet ist?
  • Kann man diesen Spielbaum auf einer handelsüblichen Festplatte speichern, wenn pro Knoten des Spielbaums 1 Byte Speicherplatz benötigt wird?

Häufglöckner Spielbaum.png

Für die Speicherung eines solchen Spielbaumes würde man ungefähr 8\cdot 10^{35} GB benötigen. Eine Studie von IDC hat für 2007 prognostiziert, dass der weltweit verfügbare Speicherplatz 2,8\cdot 10^{11} GB beträgt. Es ist also nicht möglich einen solchen Spielbaum zu speichern, selbst wenn man doppelt oder viermal so viel Speicherplatz zur Verfügung hätte.