Geraden am Kreis
Lernpfad
|
1. Aufgabe:
Mit dieser Aufgabe sollst du mit den verschiedenen Geraden am Kreis vertraut gemacht werden.
Ordne die Begriffe und Abbildungen richtig zu. Ziehe dafür die möglichen Lösungen mit gehaltener linker Maustaste in die Felder. Anschließend kannst du dein Ergebnis überprüfen. Hast du etwas falsch zugeordnet, kannst du anschließend diese Felder neu besetzen.
Passante | Tangente | Sekante | Zentrale |
2. Aufgabe:
Benutze im linken Bild mit gehaltener linker Maustaste den Schieberegler und bearbeite danach die Aufgabe rechts daneben:
Abstand: Gerade Kreis | Aufgabe |
---|---|
Benutze den Schieberegler und löse damit das Quiz! Quiz: - Wieviele Zentralen enthält der Kreis? (!keine) (eine) (!zwei) (!ganz viele) - Welche Aussage bei Sekanten ist richtig? (!Der Abstand der Geraden g zum Mittelpunkt M ist größer als der Radius r) (!Der Abstand der Geraden g zum Mittelpunkt M ist genauso groß wie der Radius r) (Der Abstand der Geraden g zum Mittelpunkt M ist kleiner als der Radius r) - Gibt es eine Passante, die mit dem Kreis k einen Schnittpunkt hat? (!ja) (nein) |
3. Aufgabe:
Mit dieser Aufgabe sollen nun die Eigenschaften der Geraden am Kreis festgehalten werden.
Ziehe dafür die möglichen Lösungen mit gehaltener linker Maustaste in die Felder. Anschließend kannst du dein Ergebnis überprüfen. Hast du etwas falsch zugeordnet, kannst du anschließend diese Felder neu besetzen.
- Ist der Abstand d der Gerade g zum Kreismittelpunkt M größer als der Radius r des Kreises, so nennt man die Gerade "Passante" (Schreibweise: d(M/g) > r).
- Sind Abstand der Geraden g zum Kreismittelpunkt M und Radius r gleich groß, so nennt man die Gerade "Tangente" (Schreibweise: d(M/g) = r).
- Ist der Abstand der Gerade g zum Kreismittelpunkt M kleiner als der Radius r des Kreises, so nennt man die Gerade "Sekante" (Schreibweise: d(M/g) < r). Spezialfall: Geht die Sekante durch den Mittelpunkt M des Kreises, so nennt man sie "Zentrale".
6. Aufgabe:
Beispiel für ein richtiges Terzett:
Parallele
kein Schnittpunkt