Erarbeitung von Grundwissen für den Satz des Thales

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Mathematik-digital Pfeil-3d.png
Lernpfad

Erarbeitung von Grundwissen für den Satz des Thales

Gestreckterw nicostahl.jpg

Recherw nicostahl.jpg

Spitz nicostahl.jpg


Welche Besonderheiten erkennst du bei diesem gleichschenkligen Dreieck?

Tipps:

  • Ziehe an dem grünen Punkt
  • Achte dabei auf die rot markierten Winkel
  • Was fällt dir bei den beiden orange markierten Schenkeln a und b auf?
  • Haben die beiden Winkel α und β irgendeine Besonderheit?







Viel Spaß beim Memory

Schenkel Seite a
180° Innenwinkelsumme
Strecke MC Symmetrieachse
α und β Basiswinkel
180°-2α γ


















Quiz

Lies die folgenden Sätze konzentriert durch und klicke die korrekten Aussagen mit der linken Maustaste an.

1. Welche Aussage stimmt?

In einem gleichschenkligen Dreieck sind mindestens zwei Seiten gleich lang.
In einem gleichschenkligen Dreieck werden zwei gleich lange Seiten auch Basisseiten genannt.
Die dritte Seite, die den beiden gleich langen Seiten gegenüberliegt, bezeichnet man als Schenkel.
Die zwei gleich großen Winkel, die den Schenkeln gegenüberliegen, heißen Basiswinkel.

Gleichschenkliges Dreieck

2. Wie viele kongruente Dreiecke sind im Dreieck ΔABC enthalten?

3
2
4

3. Welche Bezeichnungen hat die Strecke [MC]?

Mittelsenkrechte zur Basis
Winkelhalbierende des Winkels an der Spitze C
Seitenhalbierende der beiden Schenkel
Seitenhalbierende der Basis

4. Welche Gleichung ist richtig?

180° - 2α = γ
α = γ
α = β
α + β + γ = 180°

Punkte: 0 / 0



Nuvola apps kig.png   Merke

Eigenschaften eines gleichschenkligen Dreiecks:

  • Mindestens zwei Seiten sind gleich lang
  • Basiswinkel sind gleich groß
  • Die Innenwinkelsumme beträgt stets 180°
  • Besitz von Achsensymmetrie



  Aufgabe   Stift.gif

Arbeitsauftrag:

  • Zeichne in dein Übungsheft ein gleichschenkliges Dreieck.
  • Schreibe die besonderen Eigenschaften eines gleichschenkligen Dreiecks in dein Heft.
  • Füge sonstige Besonderheiten hinzu, die dir während des Bearbeitens des Lernpfades aufgefallen sind.



Team.gif
Entstanden unter Mitwirkung von:

Nico Stahl