Lineare Gleichungssysteme rechnerisch lösen/Station 3: Unterschied zwischen den Versionen
Zeile 1: | Zeile 1: | ||
==Station 3== | ==Station 3== | ||
− | <div style="border: 2px solid # | + | <div style="border: 2px solid #008B00; background-color:#ffffff; padding:7px;"> |
Die vorherige Aufgabe hast du mit dem Gleichsetzungsverfahren gelöst. | Die vorherige Aufgabe hast du mit dem Gleichsetzungsverfahren gelöst. | ||
Zeile 83: | Zeile 83: | ||
Somit lautet die Lösung des Linearen Gleichungssystems L = { ( '''0,6''' | '''2,2''' ) } | Somit lautet die Lösung des Linearen Gleichungssystems L = { ( '''0,6''' | '''2,2''' ) } | ||
+ | </div> | ||
+ | | ||
</div> | </div> | ||
− | |||
− | |||
[[Lineare Gleichungssysteme rechnerisch lösen/Station 4|Hier gehts zu Station 4]] | [[Lineare Gleichungssysteme rechnerisch lösen/Station 4|Hier gehts zu Station 4]] | ||
+ | |||
[[Lineare Gleichungssysteme rechnerisch lösen/Station 2|Hier gehts zu Station 2]] | [[Lineare Gleichungssysteme rechnerisch lösen/Station 2|Hier gehts zu Station 2]] |
Version vom 21. Dezember 2009, 17:42 Uhr
Station 3
Die vorherige Aufgabe hast du mit dem Gleichsetzungsverfahren gelöst. Versuche nun das folgende Lineare Gleichungssystem mit diesem Verfahren zu lösen!
( I ) y + 3x = 4 und ( II ) 3y = 6x + 3
( I ) y + 3x = 4
y = -3x + 4
( II ) 3y = 6x + 3
y = 2x + 1
Wenn du dir nun die beiden Gleichungen anschaust, merkst du sicher, was du nun gleichsetzen kannst, um eine Gleichung mit einer Varaiablen zu bekommen.
-3x + 4 = 2x + 1
-3x + 4 = 2x + 1
-3x - 2x = 1 - 4
-5x = -3
x = 3/5
x = 0,6
y = -3x + 4
y = -3 * 0,6 + 4
y = - 1,8 + 4
y = 2,2
Um sicherzugehen, dass dein Punkt ( 0,6 | 2,2 ) auch die Lösung des Linearen Gleichungssystem ist, mache die Probe, indem du den Punkt in deine beiden Anfangsgleichungen einsetzt.
Zuerst Gleichung ( I ):
y + 3x = 4
2,2 + 3 * 0,6 = 4
2,2 + 1,8 = 4
4 = 4
Wir nehmen nun noch die Gleichung ( II )
3y = 6x + 3
3 * 2,2 = 6 * 0,6 + 3
6,6 = 3,6 + 3
6,6 = 6,6
Somit lautet die Lösung des Linearen Gleichungssystems L = { ( 0,6 | 2,2 ) }