Lineare Gleichungssysteme grafisch lösen/Station 4: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 3: Zeile 3:
 
<div style="border: 2px solid #0000ee; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid #0000ee; background-color:#ffffff; padding:7px;">
  
Hier sind wieder zwei Geraden f(x) und g(x) dargestellt. Mit den Schiebereglern kannst du die Steigung ( m ) und den y- Achsenabschnitt ( t ) der Geraden verändern.
+
'''Hier sind wieder zwei Geraden f (x) und g (x) dargestellt. Mit den Schiebereglern kannst du die Steigung ( m ) und den y- Achsenabschnitt ( t ) der Geraden verändern.'''
  
 
<ggb_applet height="500" width="900" showResetIcon="true" filename="Sarah_Hatos_L1_S4.ggb" />  
 
<ggb_applet height="500" width="900" showResetIcon="true" filename="Sarah_Hatos_L1_S4.ggb" />  
Zeile 11: Zeile 11:
 
<br>
 
<br>
  
Haben die Geraden immer einen Schnittpunkt?
+
'''Haben die Geraden immer einen Schnittpunkt?'''
Versuche die Geraden so zu verändern, dass Sie keinen Schnittpunkt haben.<br>  
+
'''Versuche die Geraden so zu verändern, dass Sie keinen Schnittpunkt haben.<br>'''
Gibt es auch eine Möglichkeit, dass die Geraden 2 Schnittpunkte haben?<br>
+
'''Gibt es auch eine Möglichkeit, dass die Geraden 2 Schnittpunkte haben?'''<br>
Oder kannst du Sie so verändern, dass es unendlich viele gemeinsame Punkte gibt?<br>
+
'''Oder kannst du Sie so verändern, dass es unendlich viele gemeinsame Punkte gibt?'''<br>
Wenn du die verschiedenen Möglichkeiten ausprobierst, dann vergleiche auch die Funktionswerte in der Tabelle und die Funktionsgleichungen der beiden Geraden miteinander!  
+
'''Wenn du die verschiedenen Möglichkeiten ausprobierst, dann vergleiche auch die Funktionswerte in der Tabelle und die Funktionsgleichungen der beiden Geraden miteinander!'''
 
          
 
          
  
Zeile 63: Zeile 63:
  
 
Die Geraden sind '''identisch'''. Ihre Steigung und ihre y - Achsenabschnitte sind '''gleich'''.
 
Die Geraden sind '''identisch'''. Ihre Steigung und ihre y - Achsenabschnitte sind '''gleich'''.
Die Lösungsmenge lautet <br>
+
Die Lösungsmenge lautet L = { ( x | y ) / y = 2x - 1 }.
L = { ( x / y ) / y = 2x - 1 }.
+
  
 
</div>
 
</div>
Zeile 84: Zeile 83:
  
  
'''→ [[Lineare Gleichungssysteme grafisch lösen/Station 5|Weiter zur 5. Station]]'''
+
'''<big>→ [[Lineare Gleichungssysteme grafisch lösen/Station 5|Weiter zur 5. Station]]</big>'''
  
 
[[Lineare Gleichungssysteme grafisch lösen/Station 3|Hier gehts zurück zur 3. Station]]
 
[[Lineare Gleichungssysteme grafisch lösen/Station 3|Hier gehts zurück zur 3. Station]]

Version vom 12. Januar 2010, 18:56 Uhr

Station 4

Hier sind wieder zwei Geraden f (x) und g (x) dargestellt. Mit den Schiebereglern kannst du die Steigung ( m ) und den y- Achsenabschnitt ( t ) der Geraden verändern.




Haben die Geraden immer einen Schnittpunkt? Versuche die Geraden so zu verändern, dass Sie keinen Schnittpunkt haben.
Gibt es auch eine Möglichkeit, dass die Geraden 2 Schnittpunkte haben?
Oder kannst du Sie so verändern, dass es unendlich viele gemeinsame Punkte gibt?
Wenn du die verschiedenen Möglichkeiten ausprobierst, dann vergleiche auch die Funktionswerte in der Tabelle und die Funktionsgleichungen der beiden Geraden miteinander!



In den folgenden Zeichungen sind verschiedene Lineare Gleichungssyteme grafisch dargestellt. Versuche die nebenstehenden Lückentexte auszufüllen. Was fällt dir auf?

Lernpfad 1 Station 4 Hatos 1.png

Die Geraden haben einen Schnittpunkt. Die Steigung der beiden Geraden ist unterschiedlich. Die Lösungsmenge lautet L = { ( 1 | 1 ) }.


Lernpfad 1 Station 4 Hatos 2.png

Die Geraden haben keinen Schnittpunkt. Die Steigung der beiden Geraden ist gleich. Sie sind also parallel Die Lösungsmenge lautet L = { }.


Lernpfad 1 Station 4 Hatos 3.png

Die Geraden sind identisch. Ihre Steigung und ihre y - Achsenabschnitte sind gleich. Die Lösungsmenge lautet L = { ( x | y ) / y = 2x - 1 }.

Versuche nun die zwei folgenden Fragen zu beantworten! Motivation Hatos 6.PNG

1. Frage: Welche Fälle können auftreten? (Das Lineare Gleichungssystem ist eindeutig lösbar) (Das Lineare Gleichungssytem ist unerfüllbar, d.h. keine Lösung) (Das Lineare Gleichungssystem hat unendlich viele Lösungen) (!Das Lineare Gleichungssystem hat 2 Lösungen)

2. Frage: Wieviele verschiedene Möglichkeiten für die Lösungsmenge eines Linearen Gleichungssystems gibt es also? (!1) (!2) (3) (!4)

 


Weiter zur 5. Station

Hier gehts zurück zur 3. Station