Lineare Gleichungssysteme grafisch lösen/Station 4: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 14: Zeile 14:
 
<div class="multiplechoice-quiz">
 
<div class="multiplechoice-quiz">
  
Beantworte die Fragen durch Ausprobieren im obigen Koordinatensystem!
+
Beantworte die Fragen durch '''Ausprobieren''' im obigen Koordinatensystem!
  
 
1. Haben die Geraden immer einen Schnittpunkt? (!Ja) (Nein)
 
1. Haben die Geraden immer einen Schnittpunkt? (!Ja) (Nein)

Version vom 15. Januar 2010, 23:35 Uhr

Station 4

Hier sind wieder zwei Geraden f (x) und g (x) dargestellt.

Mit den Schiebereglern kannst du die Steigung ( m ) und den y- Achsenabschnitt ( t ) der Geraden verändern.




Beantworte die Fragen durch Ausprobieren im obigen Koordinatensystem!

1. Haben die Geraden immer einen Schnittpunkt? (!Ja) (Nein)

2. Kannst du die Geraden so verändern, dass Sie keinen Schnittpunkt haben. (Ja) (!Nein)

3. Gibt es auch eine Möglichkeit, dass die Geraden 2 Schnittpunkte haben? (!Ja) (Nein)

4. Oder kannst du Sie so verändern, dass es unendlich viele gemeinsame Punkte gibt? (Ja) (!Nein)

Vergleiche auch die Funktionswerte in der Tabelle und die Funktionsgleichungen der beiden Geraden miteinander!


 


In den folgenden Zeichungen sind verschiedene Lineare Gleichungssyteme grafisch dargestellt. Versuche die nebenstehenden Lückentexte auszufüllen. Was fällt dir auf?

Lernpfad 1 Station 4 Hatos 1.png

Die Geraden haben einen Schnittpunkt.
Die Steigung der beiden Geraden ist unterschiedlich.
Die Lösungsmenge dieses Beispiels lautet L = { ( 1 | 1 ) }.


Lernpfad 1 Station 4 Hatos 2.png

Die Geraden haben keinen Schnittpunkt.
Die Steigung der beiden Geraden ist gleich.
Sie sind also parallel
Die Lösungsmenge lautet L = { }.


Lernpfad 1 Station 4 Hatos 3.png

Die Geraden sind identisch.
Ihre Steigung und ihre y - Achsenabschnitte sind gleich.
Die Lösungsmenge des Beispiels lautet L = { ( x | y ) / y = 2x - 1 }.

Versuche nun die folgende Frage zu beantworten! Motivation Hatos 6.PNG

Welche Fälle können auftreten? (Das Lineare Gleichungssystem ist eindeutig lösbar) (Das Lineare Gleichungssytem ist unerfüllbar, d.h. keine Lösung) (Das Lineare Gleichungssystem hat unendlich viele Lösungen) (!Das Lineare Gleichungssystem hat 2 Lösungen)

 


Weiter zur 5. Station

Hier gehts zurück zur 3. Station