Parameter b1: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 39: Zeile 39:
  
 
<ggb_applet width="676" height="599"  version="3.2" ggbBase64="UEsDBBQACAAIAK6WUzwAAAAAAAAAAAAAAAAyAAAAYzY3OWI1MGY4MmYzNDU2ZTMwMWQ1OWU0YWYxZjUxMmZcYmFrZXRiYWxsa29yYi5wbmfVVmtQE1cUDpbW9e0KBYzsBNiATdXUN22gIg/dADEg0YIVGnkIglIfbNAqAjq0jURXN4RHCiIgFVGrvBSpGVACGK0NCS8pEFsM6hICVApWjAO9sUz7o3/6s51J5txz7znn++453+zuiUA+NmcmfSaNRpvjy/UJotEs4sE/GpoGdljFoTdoNCjI18dzy6GuQZ3/gW7O/PWblzGVxowlarpMuPU++RqeUaDdlSfY+6tLerzFzXdYM2p1Fl097m+nEjTONAoqQKcM8KcMZ9qUoaC/gpZSH84NOB7eDrPVlTH5WXTlq+W1HK9Az7aGMgP08eI8mewkdyS8nZxp9Xnj2eUlya4UVFi5yW/2ZULTW50lo8SEJry+X0xQECeCF0z/BGGZJP5+Rgy3NMHKSyjYri9KGHpxt27S0WOY4dg/zJZUhmDSZh5SKl8Aln54mkYWktEYV9GQ10YGrSm3nnXTLSWN5Tn+8ZmABHKnTe+ryJh6ucTODfHETp4ldrDpbsidUB9sue2KRM5xws7srQarGjE4izDiloh5v2YXWCXA4Kyhs19ccxFt4oOMU+b8IjTHXG2FrQgcAdb/DNTAkSUgiIKeOgHvwQbkb6Qp3Ai2QVzeCuPmCk+dzODAS9hsJljwJ9SR8eeDpu7JN4yTw9KbzKuyxlDjIoK+TQs/aPTpDaligcScauTy6g0gwXtvomxPOlF2BBtZqhflFqHGTtK5I44nIPQaGNGS4kx573j/xI+MSYDbp/z5qrOQETtZSPxOQbcO9oX7Gn9bW7bbo5QAExk9yZUv3hcBWrvJLch0T9EBm+AXg6rfDndWIjGgMqcILRE8XjihQCsBV1U3fEtqe22/IsUHA4W/2ZMsYb7kVxKBJWiKoKK5lHFq/A0B9e7Y/gLe5BaCCFSg2cGftn93V8wQYJ1F6LIfrt2u1Y89wzANaeW/M3PWuaHgJQCE0/Idqrcx9JiQo+fswfjUyzJPHFyirB0tsDZAY24HEu8wPfK2YnhaQU3IdfSUx1kz+R6lDe+a7enp8a64Dwa2ye4sODheP2Q1AG3Hi5+3RI+2B/KcRIArU58Vdb/uAgpmA/IK0N2JUVQuhadVIDUHj465+mILHkW1wzjT1MidkNABPigIfk2hb1sPqKgAOwOU6SZ9ZnMCaDc3kakc42YPZporUVxDLsqpT0TkY7lJn2ARhLAFTj/YN1G/WJguYk7YuYJSG49yPUYY8iP2xQD4/Nw5hm7ypbIViG9hBRQ8rEoHArI2qnq8vQGgqoV8OfAlu5r7QdIqc1cWaMnUsz80CPTmS0Tx/Wzi7lO5K8Et8O1bJBN36IgWRnzbSJPRg1OIcryaiNGjd3aObvQGjcq2v7viMJvv7u0w0RsOf0Gpru1vg1369NsmiL7mwH3YIwRDHKscht950tGtbElPOvQ6clFK50NEqIW9qh3PC0YUJRpSC29zdgZEdm7fN15euhZc9YHYco9v/Y1Vzm4H4uxFaTcJ92Y1vZoLuOfUMO69vrSpa3qTIuQ8egUGzEzpw/vziR0eI+rIt9ZC8p8/GtGGbTXBNwa4D7KiMogk6btIYZfoOnHTowhd9G2UJnjvuHtyFKZe977RoZGpv4hypOXow7m83G6SNb2idiUxK6yN4j6RnTS1PE/RXtiLXWAY86IAjebo8NsP56xzr/HHRuznTz4OZK+eJyrmBzrVhf7K+lrA/1oXDqLk+dk9mne7k0siM4mlfhiVJSUGvsDRz8a3u38VguV0kDlj557ZBeNp5cg9K9ms3wWzy4n5OlKVvTlad9wTy1E4LwzLaGoCj7CyJIy/NbrBFSjK6zqxOtnRFXT8VTVXffXFL4TdNqTwlywwMEtkxqA49woYF69WDqbp9aOs+HuWBMgAtNSsHuiJ28rHOiGqjsdDU4myjX6H4xmHdaToKUCIw7pO747/6fSHt7jYxQ7yg3lBrTBQ01dJtyfbsCNAD2ekihikEE1LZMZEsIXsQpQ3pOq5UJXSTEH9QQs6ZJVCHWSABkTF/gJ2yltORaj1MDdb4gIkg/f11Bkj13Dqh1ixdTv2J/hgZc41AUbxMfC4eEMbqOrY6axd/tijdaFmP1YnnT0odmyFK4RdVYq4VRdRsxSkrNjXVvPDOI8jwWvgSyI0OcDwxLvd3rYA3TKkKs2OZg+vAeU633PObv4MTyQJh/eIda1wSAkrPwXxFFR5Yw6XWPkByLFb+/71K+h/G5RKHJpJQyxwSw28HqNNGcRiyuCWU0YD/zeCUhuSpw25tK3QS76ZBB8ZNN8NfJ+rXjuO/wFQSwcIo4BUKbQGAACLCAAAUEsDBBQACAAIAK6WUzwAAAAAAAAAAAAAAAA4AAAANzE4NDA1YjBkMWFmYzMwNmMyNzI1ZGZlMGJjZTc5NTdcYmFza2V0YmFsbG3DpG5uY2hlbi5wbmetVmlUE1kaBdsF4ggkOi5YaTCVIJ4GbRAkCQxrQSVhUdFWUcRl0gpogKIRcUHbJI0VaCsnGEdAttagHFw7IwoatWUREI0NAmlBQRJcgBDEBVBAppJAgzN/Zs6ZH/mq8r7l3u+9V/c90aoQeBbBmmBiYjKLzYJCTUxMefhvh9kUfGSJLPyaiQlhCxvyWZvU3PPsVgzgb/Jbn/0+E2uIuPotoQFdK6Wm/pDIOr42yinUE3BDTsHVC23j/OP+QrV8rvmucMnxJzm3+j4pd7X1aFurWnsvS/Z4CiT9Cq+HD3RkN092aIQbMIUNSCqIRqNGqRjLYEgwFYEMJp1OEYFGMx4GSMbDcDMWhpvxMDrlvyxZ4CV/CQAYa2Y5sseCDAvFyvhvGRT+70Kw3tqWT8JQ21cjoz09Z31m4688bSQvtVxJ5E2jOA5uMJszIw/km3HolMNLR2Y6i+0izDAzCjlS/eI5Op3PauPnC41uV3c5F8qy76uPg6x8zOGpEsXNtS19QhIWmYG971NaY3FQOdxxL97PHHaZCnt+GG6KiJ35Ek3xWhD2TsEF6vKBTs3D20A7Oh2rdm4LF+CJq7AL/TvW4YmnuqoJsb7vPLdikQJi2Az3p4FlRN4VcFdadYE06SOdgsUJQbUZTKfwskH7dtS2jIihIECEK4gINMKUi/YRGRMxeD2D6+Jx8JIKBZsJHHoZEZlKAerk1neSyfeetKjWrPz87hMCAO1mcEIpeecLlqVa894yuxHoJMzBK/v5yZay5ttghCX1F7gHM8FM6aCHC8L9ZxoBcgix7E/tK5pvir1tqRsS1EU59YdYpuXdPhzmoTvAkefmewvBG4pPzIJ4GVAnGZgNEzwtNOKy6zcrVeVHtw3/9XfGwcH21+yV2IWnc/biTI8lyj7UltyVINlihQNgjmaL7WtrV8uoDOfbJeSWo2CtUyU5EqhzPWATJazx3w+oXCsTwIvh9QJulT9cVBmSla5oJj/SVvcHs9dfKDl2Aty42yLdStQCNMawXGcsyPEK6xGEb1BS4a5vstQ+82fc3MYJbTuzWQ6qSJrEJKxwIVxPsgtxUSdGPZRyUgeDDso/reZtnn32a4lY7QMgVTIpLZKkove49OVaI9xngWjDqj/Sghq082muIbm92YqkN7onylivthHNx5HB5wNbdMkehO78xYdtdD9lshaxfGpivGUZvzTY2eUEsZnDbfv3uuf0vaqQOOaIw707tspZmbbOpXOXpyYKiVoz8A9iACSL445G5Hc8mmdZZr/sqTaAw4GKROzugofnSntpYXyy7m8a9Ox6F038po4EebeTe5mYYnNXEq+tiA30PPTzlrbh98neHUmjOnYna/B667TgiJ516/mWRbRH9L+XFz/7Ovrygat2IHCk+iOtNdrSNdQ57E7F4lrag5CslIZzVMSaVHUK3ssHozxJVWxeDGm9287NW75K7M2ky/fDRTl1JYz9V07a2SLni4VnslM82thDtnvcu8QaNEvYWfMxKWHxcbGrDN9qi1hOs0TzVpVlaAVzD5zvjA8a3KnO+j7ajXos/0GS3CH1eFYHy7nA8wbzcVP7oXUno+ino+3e9r1GFArSvSiFIlS7Xes/rz7hzMZKj5t5g4Vtb5hDplPaW5IiKjNZH4oTuPOl+D5j5omzG89ST9jNOGMfODK8UuqSHOP9OKtA9Y73nd6flZveQBTxhZcrp1d9/qmYvbHyAbNevbv3kSTCFVEtgF2elaygsXF/1VAjz7ZKkh6/ztndNOpG4sIdLoH53I+9TQL8+2iUclPTk4pp0SRy5qjy18ddGtalc7JYiCmrGOkF6rYvpG2zIA3SW73uxLmP8rTmkttLwpSbDt0SpYAbM9IL2eHKtW4/St2SHRLa4NmUk7mjmxfV92yvanlDP31hmpLeahIa4rcx79tgNEFd7bGzeODt/bSr94vOL39xL9rmVdBLBmM0LNgKi9wDe7V6NFlSMtekz128wod++gSjvrvmsc5Lsi9GIwCbE+F4ZVwi/ul3TiMuc4Gv9mDeENDOagpYAlVIZv3ALVYlt/h4WyFcwTnqaPJIMJAzHI+i4KZXLN+O6OCXwy+siPA1JGp5d7UDjXH9tC8ELPCknWSGqmRekBkF252Cq4DQ6dEyIUrnpwcEHxp52z/PLfZaxs84jI85VEFcFnCvtFnI+pyaYquutgIyRz1Gu5occYiugTUethQsn9ua65lMwJWIRj6csWGxTfrrPUQ45XKN750qFwgw5TTB2T4Q8CQRdp7FR+llEp1XP5mCK1oz6GuFCEGcX4NYb6UvzHC47xnxFy2mEmG6/Ip+8OqPRld1Y4Ch7yHLqbYo/XQ3+QhuHWAc376WiJO5Hy8TmfNRMLpXX8TxubFUfc1RRw6uhvifD1pUYKcPhoOA1f8ALU7q04FvEKiHjEj1sWorEV6lok+PhgpArPAWaJFmCJqN6IX3aigMWCFGCRaBgAQXXxGoRnFdZuHiX0HEH0bhxluj4gpocKEgCVduvEuSwTWWhT/0LrUxS59sqNvR+3jRc+OYj18eQ6k2g1ZRsMhGNB/SK/pYFHXiQNCXYOpu2nzOYdaUL8+xxAe+2is7lDtwBI+WXIyT9d4l4tibQ9UZaSBQQ8ZK6c4HOSt0A4FGxmMHyjjlibJjpHGv/oj5k3Y7vnzEScT1nIxFDA0bDymhYVIMLeuTheDkGdMfb+3GibEw/fdWvsQcy5rANM70BOYY8QlMI/EJzDHikzDVY10bqjgmpi/bRn/5BT73PBn5rVJy8fC+pSuGFH5UrPAYGFwyvrLjjaKTCZPGXRWTV/bPbYF8MccoOHlbQJNpikA1Onlb/Cdk4RrOpeTQ/8O16n+6qakGFriyXxNKa5i78BunCds/BLrku5X/L1BLBwi7P+UhdQgAAJgKAABQSwMEFAAIAAgArpZTPAAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlV9uO2zYQfW6+gtBT0sIyKYm6APYG3fQlwKYpsG0eiqIAJVE2a4k0SGpX3u/pn/THOqQk23W66Pa2SFHAgKjheHhmzpkxvXo9dC2649oIJdcBCXGAuKxULeRmHfS2WeTB66sXqw1XG15qhhqlO2bXQRxGgbP34urFZyuzVfeItd7lg+D366BhreEBMnvNWW22nNvf2Fk/iFYwfXhf/sQra04bY5C3ct/DKVb3YKu6+kaY+XXpD9y3wn4l7kTNNWpVtQ5SCtBh9YFrKyrWroMEj5ZoHUQXm2CK3e5WafGgpHXup+ANWBAy4oFDRSJnWy19oiveV62oBZMuGY8DnBC6F7XdAoQshZBcbLaAlRbZGK1SSte3B2N5h4bvuVYAh9AwpaSIkziL4ohmSYAO41aS5iGlGc4pxYQkKYGQBhA7KHkYZTgGfwIfnBH40qNb/mh+d8utBSoNYgM3cz03WtTn67fmWrX1kYK9EtK+YXvba6+CeDLd2oM7C8qmXYpfyk3LJxtAqba82pVquB3LFo+hvz3s/Vc8nHLzRrVKI+0IoeAwPcvx6X0czqMX9j7Ye0wxXNDjPiki7+Gf5fj0Xq2QI7QpbzInTfB8jDDIGSC4E+9cjpaVHLQQoF4KezO/gGZ2p0yd/9d9V0LTnKvmGJL8QyFXywu5rXZcS96OopLAa696g+6ceEfqPI6aV6KD13FjKghzZH0HAEZrzTeaz7jHjhvL5XfxuXAvzKvlDMJhMIC1sjA6IB/rcnGdbaGr3Kpm1llc27S849BT1qtB9h3XojpWhgXuNDiinw5yU2h5HCvKT4iLap7KDtuP6AVmyX7LYBVO7dCyA0yL8xR9tHeqng+ejm39WOkETMSFH4kdG6bhyEqj2t7y2woKKG9UxayfnCO6aRAQjJ3v4GZQ4lYHWOVu0YiBnzrt98fPSbx2CyqR3BjH41S9WcASSPaVh8GyH5OEacv5KMDZF+0had/FR4WArEY6/pCY8pIY/CkRQ4/E0L9CDCETMVn2nyOmuiRmEYfFczLzvmkMt66OC+KL+Gy0YTrRRnD8KfI2wIXHuMvUXPYGLlQDxGteDq/QGjH0ORp+fBmF+BX6ApXuDZ5A7fIj1pte+tkanEI9OZvHZXD2S/EUHeAndih+cqkflzkQsDkBvRZtTXzGjYB4knXgUqVZUVLc5FETJzTlMSY1LXjCGtLA3af5oWQ7bkvWtjuly3AvNyMuIa9Ztdto1ct6BHx2l7RM22/cDQdJ/xvsKwBiS8OI5mmW0CzHGBe48MJbQFGyvMhoHuE4j5OEJpDgw9nP1nMyRP4sQ//GfPqYuOiSuIzk0LslrglrqhinVZRFtG44LiueFTQD4szEXPfLz1LCdVL+TfoWWVjQKMWEpiSHG3VGR/6gZEWSgiFKiySOk5T+7+hbnt/d/N+b6f/d1a9QSwcIoCJz+DIEAAARDgAAUEsBAhQAFAAIAAgArpZTPKOAVCm0BgAAiwgAADIAAAAAAAAAAAAAAAAAAAAAAGM2NzliNTBmODJmMzQ1NmUzMDFkNTllNGFmMWY1MTJmXGJha2V0YmFsbGtvcmIucG5nUEsBAhQAFAAIAAgArpZTPLs/5SF1CAAAmAoAADgAAAAAAAAAAAAAAAAAFAcAADcxODQwNWIwZDFhZmMzMDZjMjcyNWRmZTBiY2U3OTU3XGJhc2tldGJhbGxtw6RubmNoZW4ucG5nUEsBAhQAFAAIAAgArpZTPKAic/gyBAAAEQ4AAAwAAAAAAAAAAAAAAAAA7w8AAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAAABAABbFAAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" />
 
<ggb_applet width="676" height="599"  version="3.2" ggbBase64="UEsDBBQACAAIAK6WUzwAAAAAAAAAAAAAAAAyAAAAYzY3OWI1MGY4MmYzNDU2ZTMwMWQ1OWU0YWYxZjUxMmZcYmFrZXRiYWxsa29yYi5wbmfVVmtQE1cUDpbW9e0KBYzsBNiATdXUN22gIg/dADEg0YIVGnkIglIfbNAqAjq0jURXN4RHCiIgFVGrvBSpGVACGK0NCS8pEFsM6hICVApWjAO9sUz7o3/6s51J5txz7znn++453+zuiUA+NmcmfSaNRpvjy/UJotEs4sE/GpoGdljFoTdoNCjI18dzy6GuQZ3/gW7O/PWblzGVxowlarpMuPU++RqeUaDdlSfY+6tLerzFzXdYM2p1Fl097m+nEjTONAoqQKcM8KcMZ9qUoaC/gpZSH84NOB7eDrPVlTH5WXTlq+W1HK9Az7aGMgP08eI8mewkdyS8nZxp9Xnj2eUlya4UVFi5yW/2ZULTW50lo8SEJry+X0xQECeCF0z/BGGZJP5+Rgy3NMHKSyjYri9KGHpxt27S0WOY4dg/zJZUhmDSZh5SKl8Aln54mkYWktEYV9GQ10YGrSm3nnXTLSWN5Tn+8ZmABHKnTe+ryJh6ucTODfHETp4ldrDpbsidUB9sue2KRM5xws7srQarGjE4izDiloh5v2YXWCXA4Kyhs19ccxFt4oOMU+b8IjTHXG2FrQgcAdb/DNTAkSUgiIKeOgHvwQbkb6Qp3Ai2QVzeCuPmCk+dzODAS9hsJljwJ9SR8eeDpu7JN4yTw9KbzKuyxlDjIoK+TQs/aPTpDaligcScauTy6g0gwXtvomxPOlF2BBtZqhflFqHGTtK5I44nIPQaGNGS4kx573j/xI+MSYDbp/z5qrOQETtZSPxOQbcO9oX7Gn9bW7bbo5QAExk9yZUv3hcBWrvJLch0T9EBm+AXg6rfDndWIjGgMqcILRE8XjihQCsBV1U3fEtqe22/IsUHA4W/2ZMsYb7kVxKBJWiKoKK5lHFq/A0B9e7Y/gLe5BaCCFSg2cGftn93V8wQYJ1F6LIfrt2u1Y89wzANaeW/M3PWuaHgJQCE0/Idqrcx9JiQo+fswfjUyzJPHFyirB0tsDZAY24HEu8wPfK2YnhaQU3IdfSUx1kz+R6lDe+a7enp8a64Dwa2ye4sODheP2Q1AG3Hi5+3RI+2B/KcRIArU58Vdb/uAgpmA/IK0N2JUVQuhadVIDUHj465+mILHkW1wzjT1MidkNABPigIfk2hb1sPqKgAOwOU6SZ9ZnMCaDc3kakc42YPZporUVxDLsqpT0TkY7lJn2ARhLAFTj/YN1G/WJguYk7YuYJSG49yPUYY8iP2xQD4/Nw5hm7ypbIViG9hBRQ8rEoHArI2qnq8vQGgqoV8OfAlu5r7QdIqc1cWaMnUsz80CPTmS0Tx/Wzi7lO5K8Et8O1bJBN36IgWRnzbSJPRg1OIcryaiNGjd3aObvQGjcq2v7viMJvv7u0w0RsOf0Gpru1vg1369NsmiL7mwH3YIwRDHKscht950tGtbElPOvQ6clFK50NEqIW9qh3PC0YUJRpSC29zdgZEdm7fN15euhZc9YHYco9v/Y1Vzm4H4uxFaTcJ92Y1vZoLuOfUMO69vrSpa3qTIuQ8egUGzEzpw/vziR0eI+rIt9ZC8p8/GtGGbTXBNwa4D7KiMogk6btIYZfoOnHTowhd9G2UJnjvuHtyFKZe977RoZGpv4hypOXow7m83G6SNb2idiUxK6yN4j6RnTS1PE/RXtiLXWAY86IAjebo8NsP56xzr/HHRuznTz4OZK+eJyrmBzrVhf7K+lrA/1oXDqLk+dk9mne7k0siM4mlfhiVJSUGvsDRz8a3u38VguV0kDlj557ZBeNp5cg9K9ms3wWzy4n5OlKVvTlad9wTy1E4LwzLaGoCj7CyJIy/NbrBFSjK6zqxOtnRFXT8VTVXffXFL4TdNqTwlywwMEtkxqA49woYF69WDqbp9aOs+HuWBMgAtNSsHuiJ28rHOiGqjsdDU4myjX6H4xmHdaToKUCIw7pO747/6fSHt7jYxQ7yg3lBrTBQ01dJtyfbsCNAD2ekihikEE1LZMZEsIXsQpQ3pOq5UJXSTEH9QQs6ZJVCHWSABkTF/gJ2yltORaj1MDdb4gIkg/f11Bkj13Dqh1ixdTv2J/hgZc41AUbxMfC4eEMbqOrY6axd/tijdaFmP1YnnT0odmyFK4RdVYq4VRdRsxSkrNjXVvPDOI8jwWvgSyI0OcDwxLvd3rYA3TKkKs2OZg+vAeU633PObv4MTyQJh/eIda1wSAkrPwXxFFR5Yw6XWPkByLFb+/71K+h/G5RKHJpJQyxwSw28HqNNGcRiyuCWU0YD/zeCUhuSpw25tK3QS76ZBB8ZNN8NfJ+rXjuO/wFQSwcIo4BUKbQGAACLCAAAUEsDBBQACAAIAK6WUzwAAAAAAAAAAAAAAAA4AAAANzE4NDA1YjBkMWFmYzMwNmMyNzI1ZGZlMGJjZTc5NTdcYmFza2V0YmFsbG3DpG5uY2hlbi5wbmetVmlUE1kaBdsF4ggkOi5YaTCVIJ4GbRAkCQxrQSVhUdFWUcRl0gpogKIRcUHbJI0VaCsnGEdAttagHFw7IwoatWUREI0NAmlBQRJcgBDEBVBAppJAgzN/Zs6ZH/mq8r7l3u+9V/c90aoQeBbBmmBiYjKLzYJCTUxMefhvh9kUfGSJLPyaiQlhCxvyWZvU3PPsVgzgb/Jbn/0+E2uIuPotoQFdK6Wm/pDIOr42yinUE3BDTsHVC23j/OP+QrV8rvmucMnxJzm3+j4pd7X1aFurWnsvS/Z4CiT9Cq+HD3RkN092aIQbMIUNSCqIRqNGqRjLYEgwFYEMJp1OEYFGMx4GSMbDcDMWhpvxMDrlvyxZ4CV/CQAYa2Y5sseCDAvFyvhvGRT+70Kw3tqWT8JQ21cjoz09Z31m4688bSQvtVxJ5E2jOA5uMJszIw/km3HolMNLR2Y6i+0izDAzCjlS/eI5Op3PauPnC41uV3c5F8qy76uPg6x8zOGpEsXNtS19QhIWmYG971NaY3FQOdxxL97PHHaZCnt+GG6KiJ35Ek3xWhD2TsEF6vKBTs3D20A7Oh2rdm4LF+CJq7AL/TvW4YmnuqoJsb7vPLdikQJi2Az3p4FlRN4VcFdadYE06SOdgsUJQbUZTKfwskH7dtS2jIihIECEK4gINMKUi/YRGRMxeD2D6+Jx8JIKBZsJHHoZEZlKAerk1neSyfeetKjWrPz87hMCAO1mcEIpeecLlqVa894yuxHoJMzBK/v5yZay5ttghCX1F7gHM8FM6aCHC8L9ZxoBcgix7E/tK5pvir1tqRsS1EU59YdYpuXdPhzmoTvAkefmewvBG4pPzIJ4GVAnGZgNEzwtNOKy6zcrVeVHtw3/9XfGwcH21+yV2IWnc/biTI8lyj7UltyVINlihQNgjmaL7WtrV8uoDOfbJeSWo2CtUyU5EqhzPWATJazx3w+oXCsTwIvh9QJulT9cVBmSla5oJj/SVvcHs9dfKDl2Aty42yLdStQCNMawXGcsyPEK6xGEb1BS4a5vstQ+82fc3MYJbTuzWQ6qSJrEJKxwIVxPsgtxUSdGPZRyUgeDDso/reZtnn32a4lY7QMgVTIpLZKkove49OVaI9xngWjDqj/Sghq082muIbm92YqkN7onylivthHNx5HB5wNbdMkehO78xYdtdD9lshaxfGpivGUZvzTY2eUEsZnDbfv3uuf0vaqQOOaIw707tspZmbbOpXOXpyYKiVoz8A9iACSL445G5Hc8mmdZZr/sqTaAw4GKROzugofnSntpYXyy7m8a9Ox6F038po4EebeTe5mYYnNXEq+tiA30PPTzlrbh98neHUmjOnYna/B667TgiJ516/mWRbRH9L+XFz/7Ovrygat2IHCk+iOtNdrSNdQ57E7F4lrag5CslIZzVMSaVHUK3ssHozxJVWxeDGm9287NW75K7M2ky/fDRTl1JYz9V07a2SLni4VnslM82thDtnvcu8QaNEvYWfMxKWHxcbGrDN9qi1hOs0TzVpVlaAVzD5zvjA8a3KnO+j7ajXos/0GS3CH1eFYHy7nA8wbzcVP7oXUno+ino+3e9r1GFArSvSiFIlS7Xes/rz7hzMZKj5t5g4Vtb5hDplPaW5IiKjNZH4oTuPOl+D5j5omzG89ST9jNOGMfODK8UuqSHOP9OKtA9Y73nd6flZveQBTxhZcrp1d9/qmYvbHyAbNevbv3kSTCFVEtgF2elaygsXF/1VAjz7ZKkh6/ztndNOpG4sIdLoH53I+9TQL8+2iUclPTk4pp0SRy5qjy18ddGtalc7JYiCmrGOkF6rYvpG2zIA3SW73uxLmP8rTmkttLwpSbDt0SpYAbM9IL2eHKtW4/St2SHRLa4NmUk7mjmxfV92yvanlDP31hmpLeahIa4rcx79tgNEFd7bGzeODt/bSr94vOL39xL9rmVdBLBmM0LNgKi9wDe7V6NFlSMtekz128wod++gSjvrvmsc5Lsi9GIwCbE+F4ZVwi/ul3TiMuc4Gv9mDeENDOagpYAlVIZv3ALVYlt/h4WyFcwTnqaPJIMJAzHI+i4KZXLN+O6OCXwy+siPA1JGp5d7UDjXH9tC8ELPCknWSGqmRekBkF252Cq4DQ6dEyIUrnpwcEHxp52z/PLfZaxs84jI85VEFcFnCvtFnI+pyaYquutgIyRz1Gu5occYiugTUethQsn9ua65lMwJWIRj6csWGxTfrrPUQ45XKN750qFwgw5TTB2T4Q8CQRdp7FR+llEp1XP5mCK1oz6GuFCEGcX4NYb6UvzHC47xnxFy2mEmG6/Ip+8OqPRld1Y4Ch7yHLqbYo/XQ3+QhuHWAc376WiJO5Hy8TmfNRMLpXX8TxubFUfc1RRw6uhvifD1pUYKcPhoOA1f8ALU7q04FvEKiHjEj1sWorEV6lok+PhgpArPAWaJFmCJqN6IX3aigMWCFGCRaBgAQXXxGoRnFdZuHiX0HEH0bhxluj4gpocKEgCVduvEuSwTWWhT/0LrUxS59sqNvR+3jRc+OYj18eQ6k2g1ZRsMhGNB/SK/pYFHXiQNCXYOpu2nzOYdaUL8+xxAe+2is7lDtwBI+WXIyT9d4l4tibQ9UZaSBQQ8ZK6c4HOSt0A4FGxmMHyjjlibJjpHGv/oj5k3Y7vnzEScT1nIxFDA0bDymhYVIMLeuTheDkGdMfb+3GibEw/fdWvsQcy5rANM70BOYY8QlMI/EJzDHikzDVY10bqjgmpi/bRn/5BT73PBn5rVJy8fC+pSuGFH5UrPAYGFwyvrLjjaKTCZPGXRWTV/bPbYF8MccoOHlbQJNpikA1Onlb/Cdk4RrOpeTQ/8O16n+6qakGFriyXxNKa5i78BunCds/BLrku5X/L1BLBwi7P+UhdQgAAJgKAABQSwMEFAAIAAgArpZTPAAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlV9uO2zYQfW6+gtBT0sIyKYm6APYG3fQlwKYpsG0eiqIAJVE2a4k0SGpX3u/pn/THOqQk23W66Pa2SFHAgKjheHhmzpkxvXo9dC2649oIJdcBCXGAuKxULeRmHfS2WeTB66sXqw1XG15qhhqlO2bXQRxGgbP34urFZyuzVfeItd7lg+D366BhreEBMnvNWW22nNvf2Fk/iFYwfXhf/sQra04bY5C3ct/DKVb3YKu6+kaY+XXpD9y3wn4l7kTNNWpVtQ5SCtBh9YFrKyrWroMEj5ZoHUQXm2CK3e5WafGgpHXup+ANWBAy4oFDRSJnWy19oiveV62oBZMuGY8DnBC6F7XdAoQshZBcbLaAlRbZGK1SSte3B2N5h4bvuVYAh9AwpaSIkziL4ohmSYAO41aS5iGlGc4pxYQkKYGQBhA7KHkYZTgGfwIfnBH40qNb/mh+d8utBSoNYgM3cz03WtTn67fmWrX1kYK9EtK+YXvba6+CeDLd2oM7C8qmXYpfyk3LJxtAqba82pVquB3LFo+hvz3s/Vc8nHLzRrVKI+0IoeAwPcvx6X0czqMX9j7Ye0wxXNDjPiki7+Gf5fj0Xq2QI7QpbzInTfB8jDDIGSC4E+9cjpaVHLQQoF4KezO/gGZ2p0yd/9d9V0LTnKvmGJL8QyFXywu5rXZcS96OopLAa696g+6ceEfqPI6aV6KD13FjKghzZH0HAEZrzTeaz7jHjhvL5XfxuXAvzKvlDMJhMIC1sjA6IB/rcnGdbaGr3Kpm1llc27S849BT1qtB9h3XojpWhgXuNDiinw5yU2h5HCvKT4iLap7KDtuP6AVmyX7LYBVO7dCyA0yL8xR9tHeqng+ejm39WOkETMSFH4kdG6bhyEqj2t7y2woKKG9UxayfnCO6aRAQjJ3v4GZQ4lYHWOVu0YiBnzrt98fPSbx2CyqR3BjH41S9WcASSPaVh8GyH5OEacv5KMDZF+0had/FR4WArEY6/pCY8pIY/CkRQ4/E0L9CDCETMVn2nyOmuiRmEYfFczLzvmkMt66OC+KL+Gy0YTrRRnD8KfI2wIXHuMvUXPYGLlQDxGteDq/QGjH0ORp+fBmF+BX6ApXuDZ5A7fIj1pte+tkanEI9OZvHZXD2S/EUHeAndih+cqkflzkQsDkBvRZtTXzGjYB4knXgUqVZUVLc5FETJzTlMSY1LXjCGtLA3af5oWQ7bkvWtjuly3AvNyMuIa9Ztdto1ct6BHx2l7RM22/cDQdJ/xvsKwBiS8OI5mmW0CzHGBe48MJbQFGyvMhoHuE4j5OEJpDgw9nP1nMyRP4sQ//GfPqYuOiSuIzk0LslrglrqhinVZRFtG44LiueFTQD4szEXPfLz1LCdVL+TfoWWVjQKMWEpiSHG3VGR/6gZEWSgiFKiySOk5T+7+hbnt/d/N+b6f/d1a9QSwcIoCJz+DIEAAARDgAAUEsBAhQAFAAIAAgArpZTPKOAVCm0BgAAiwgAADIAAAAAAAAAAAAAAAAAAAAAAGM2NzliNTBmODJmMzQ1NmUzMDFkNTllNGFmMWY1MTJmXGJha2V0YmFsbGtvcmIucG5nUEsBAhQAFAAIAAgArpZTPLs/5SF1CAAAmAoAADgAAAAAAAAAAAAAAAAAFAcAADcxODQwNWIwZDFhZmMzMDZjMjcyNWRmZTBiY2U3OTU3XGJhc2tldGJhbGxtw6RubmNoZW4ucG5nUEsBAhQAFAAIAAgArpZTPKAic/gyBAAAEQ4AAAwAAAAAAAAAAAAAAAAA7w8AAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAAABAABbFAAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" />
 +
|}
 +
 +
 +
 +
 +
 +
[[Variationen/Quadratische Funktionen1/Normalform|Aufgaben zur Normalform]]

Version vom 19. Februar 2010, 20:10 Uhr

Die Normalform

Maehnrot.jpg
Merke:

Man kann jede quadratische Funktion durch die Gleichung f(x) = ax2 + bx + c ausdrücken. Deshalb nennt man diese Form auch die Normalform.



Wie dir vielleicht schon aufgefallen ist, ist in der Normalform nicht nur a und c, sondern jetzt auch ein b.
Probiere am daneben stehenden Graphen selber aus, was sich an einer Parabel durch b ändert.


Aufgabe 14

Auch Flugbahnen von Bällen haben die Form einer Parabel.
Dirk Nowitzki möchte einen Korb werfen. Hilf ihm, indem du durch variieren von a, b und c die Flugbahn seines Balles in den Korb lenkst. Dazu muss die Parabel sowohl den Basketball als auch den Korb berühren.



Aufgaben zur Normalform